Finite time blow-up for a kind of initial-boundary value problem of semilinear damped wave equation

被引:12
|
作者
Lai, Ningan [1 ]
Yin, Silu [2 ]
机构
[1] Lishui Univ, Dept Math, Lishui 323000, Zhejiang, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
damped wave equations; blow up; exterior problem; Dirichlet boundary condition; CRITICAL EXPONENT; GLOBAL-SOLUTIONS; EXISTENCE; DECAY; NONEXISTENCE;
D O I
10.1002/mma.4046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the initial-boundary value problem of semilinear damped wave equation u(tt) - Delta u + u(t) = vertical bar u vertical bar(p) with power p = 1 + 2/p in an exterior domain. Blow-up result in a finite time will be established in higher dimensions (n >= 3), no matter how small the initial data are. A special test function will be constructed, and then, we obtain the blow-up result by a contradiction argument. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:1223 / 1230
页数:8
相关论文
共 50 条