Recursive Gaussian process: On-line regression and learning

被引:86
|
作者
Huber, Marco F. [1 ]
机构
[1] AGT Int, Darmstadt, Germany
关键词
Gaussian processes; Parameter learning; Kalman filtering;
D O I
10.1016/j.patrec.2014.03.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Two approaches for on-line Gaussian process regression with low computational and memory demands are proposed. The first approach assumes known hyperparameters and performs regression on a set of basis vectors that stores mean and covariance estimates of the latent function. The second approach additionally learns the hyperparameters on-line. For this purpose, techniques from nonlinear Gaussian state estimation are exploited. The proposed approaches are compared to state-of-the-art sparse Gaussian process algorithms. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 50 条
  • [1] RECURSIVE GAUSSIAN PROCESS REGRESSION
    Huber, Marco F.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3362 - 3366
  • [2] On-line WSN SoC estimation using Gaussian Process Regression: An Adaptive Machine Learning Approach
    Ali, Omer
    Ishak, Mohamad Khairi
    Ahmed, Ashraf Bani
    Salleh, Mohd Fadzli Mohd
    Ooi, Chia Ai
    Khan, Muhammad Firdaus Akbar Jalaludin
    Khan, Imran
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 9831 - 9848
  • [3] Recursive estimation for sparse Gaussian process regression
    Schuerch, Manuel
    Azzimonti, Dario
    Benavoli, Alessio
    Zaffalon, Marco
    [J]. AUTOMATICA, 2020, 120
  • [4] An enhanced prediction model for the on-line monitoring of the sensors using the Gaussian process regression
    Lee, Sungyeop
    Chai, Jangbom
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2019, 33 (05) : 2249 - 2257
  • [5] An enhanced prediction model for the on-line monitoring of the sensors using the Gaussian process regression
    Sungyeop Lee
    Jangbom Chai
    [J]. Journal of Mechanical Science and Technology, 2019, 33 : 2249 - 2257
  • [6] On-line learning methods for Gaussian processes
    Oba, S
    Sato, M
    Ishii, S
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (03) : 650 - 654
  • [7] On-line learning methods for Gaussian processes
    Oba, S
    Sato, M
    Ishii, S
    [J]. ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 292 - 299
  • [8] Erratum to “An enhanced prediction model for the on-line monitoring of the sensors using the Gaussian process regression”
    Sungyeop Lee
    Jangbom Chai
    [J]. Journal of Mechanical Science and Technology, 2019, 33 : 3051 - 3051
  • [9] On-line identification with regularised Evolving Gaussian process
    Stepancic, Martin
    Kocijan, Jus
    [J]. PROCEEDINGS OF THE 2017 EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS), 2017,
  • [10] Efficient Recursive Implementation of Spatial-Temporal Gaussian Process Regression
    Zhang, Junpeng
    Kuang, Ye
    Chen, Tianshi
    Lu, Xiaochen
    Yin, Feng
    Zhong, Renxin
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1081 - 1086