Hankel operators and invariant subspaces of the Dirichlet space

被引:14
|
作者
Luo, Shuaibing [1 ]
Richter, Stefan [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
SPECTRAL-SYNTHESIS;
D O I
10.1112/jlms/jdv001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Dirichlet space D is the space of all analytic functions f on the open unit disc D such that f' is square integrable with respect to two-dimensional Lebesgue measure. In this paper, we prove that the invariant subspaces of the Dirichlet shift are in one-to-one correspondence with the kernels of the Dirichlet-Hankel operators. We then apply this result to obtain information about the invariant subspace lattice of the weak product D circle dot D and to some questions about approximation of invariant subspaces of D. Our main results hold in the context of superharmonically weighted Dirichlet spaces.
引用
收藏
页码:423 / 438
页数:16
相关论文
共 50 条