For a set of n points in the plane, we consider the axis-aligned (p; k)-Box COVERING problem: Find p axis-aligned, pairwise disjoint. boxes that together contain exactly n-k points. Here, our boxes are either squares or rectangles, and we want to minimize the area of the largest box. For squares, we present algorithms that find the solution in O(n + k log k) time for p = 1. and in O(n log n + k(p) log(p) k) time for p = 2; 3. For rectangles we have running times of O(n + k(3)) for p = 1 and O(n log n + k(2+p) log(p-1) k) time for p = 2; 3. In all cases; our algorithms use O(n) space.
机构:
Calif State Univ Northridge, Dept Math, Los Angeles, CA USA
Moorpk Coll, Math Dept, Moorpark, CA USACalif State Univ Northridge, Dept Math, Los Angeles, CA USA
Balas, Kevin
Dumitrescu, Adrian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin Milwaukee, Dept Comp Sci, Milwaukee, WI 53201 USACalif State Univ Northridge, Dept Math, Los Angeles, CA USA
Dumitrescu, Adrian
Toth, Csaba D.
论文数: 0引用数: 0
h-index: 0
机构:
Moorpk Coll, Math Dept, Moorpark, CA USA
Tufts Univ, Dept Comp Sci, Medford, MA 02155 USACalif State Univ Northridge, Dept Math, Los Angeles, CA USA