Multichannel interactions of two atoms in an optical tweezer

被引:19
|
作者
Hood, J. D. [1 ,2 ,3 ,5 ,6 ]
Yu, Y. [1 ,2 ,3 ]
Lin, Y-W [1 ,2 ,3 ]
Zhang, J. T. [1 ,2 ,3 ]
Wang, K. [1 ,2 ,3 ]
Liu, L. R. [1 ,2 ,3 ]
Gao, B. [4 ]
Ni, K-K [1 ,2 ,3 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Harvard MIT Ctr Ultracold Atoms, Cambridge, MA 02138 USA
[4] Univ Toledo, Dept Phys & Astron, Mailstop 111, Toledo, OH 43606 USA
[5] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
[6] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 02期
关键词
QUANTUM-DEFECT ANALYSIS; COLD; COLLISIONS; GAS;
D O I
10.1103/PhysRevResearch.2.023108
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The multichannel Na-Cs interactions are characterized by a series of measurements using two atoms in an optical tweezer, along with a multichannel quantum defect theory (MQDT) with minimal input parameters. The triplet and singlet scattering lengths are measured by performing Raman spectroscopy of the Na-Cs motional states and least-bound molecular state in the tweezer. The two-scaleMQDT improves accuracy over the single-scale model by incorporating the -C-8/r(8) potential in addition to the -C-6/r(6) potential. Magnetic Feshbach resonances are observed for only two atoms at fields which agree to within 1% of the MQDT predictions. Our tweezer-based approach, combined with an effective theory of interaction, provides a methodology for future studies of more complex interactions, such as atom-molecule and molecule-molecule interactions, and where the traditional high-phase-space-density bulk-gas techniques are technically challenging.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Pair Correlations and Photoassociation Dynamics of Two Atoms in an Optical Tweezer
    Weyland, M.
    Szigeti, S. S.
    Hobbs, R. A. B.
    Ruksasakchai, P.
    Sanchez, L.
    Andersen, M. F.
    PHYSICAL REVIEW LETTERS, 2021, 126 (08)
  • [2] Transfer of trapped atoms between two optical tweezer potentials
    Schulzyz, M.
    Crepaz, H.
    Schmidt-Kaler, F.
    Eschner, J.
    Blatt, R.
    JOURNAL OF MODERN OPTICS, 2007, 54 (11) : 1619 - 1626
  • [3] Optical Tweezer Arrays of Erbium Atoms
    Gruen, D. S.
    White, S. J. M.
    Ortu, A.
    Di Carli, A.
    Edri, H.
    Lepers, M.
    Mark, M. J.
    Ferlaino, F.
    PHYSICAL REVIEW LETTERS, 2024, 133 (22)
  • [4] Fast and Scalable Quantum Information Processing with Two-Electron Atoms in Optical Tweezer Arrays
    Pagano, Guido
    Scazza, Francesco
    Foss-Feig, Michael
    ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (3-4)
  • [5] Touching the Micron: Tactile Interactions with an Optical Tweezer
    Lamont, Stuart
    Bowman, Richard
    Williamson, John
    Rath, Matthias
    Murray-Smith, Roderick
    Padgett, Miles
    MOBILEHCI '12: COMPANION PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON HUMAN COMPUTER INTERACTION WITH MOBILE DEVICES AND SERVICES, 2012, : 217 - 217
  • [6] Trapping and Imaging Single Dysprosium Atoms in Optical Tweezer Arrays
    Bloch, Damien
    Hofer, Britton
    Cohen, Sam R.
    Browaeys, Antoine
    Ferrier-Barbut, Igor
    PHYSICAL REVIEW LETTERS, 2023, 131 (20)
  • [7] Quantum science with optical tweezer arrays of ultracold atoms and molecules
    Adam M. Kaufman
    Kang-Kuen Ni
    Nature Physics, 2021, 17 : 1324 - 1333
  • [8] Trapping Alkaline Earth Rydberg Atoms Optical Tweezer Arrays
    Wilson, J. T.
    Saskin, S.
    Meng, Y.
    Ma, S.
    Dilip, R.
    Burgers, A. P.
    Thompson, J. D.
    PHYSICAL REVIEW LETTERS, 2022, 128 (03)
  • [9] Dual-species optical tweezer for Rb and K atoms
    Wei, Yangbo
    Wei, Kedi
    Li, Shangjin
    Yan, Bo
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [10] Quantum science with optical tweezer arrays of ultracold atoms and molecules
    Kaufman, Adam M.
    Ni, Kang-Kuen
    NATURE PHYSICS, 2021, 17 (12) : 1324 - 1333