Annihilation-to-nothing: a quantum gravitational boundary condition for the Schwarzschild black hole

被引:11
|
作者
Bouhmadi-Lopez, Mariam [1 ,2 ]
Brahma, Suddhasattwa [3 ,4 ]
Chen, Che-Yu [5 ,6 ,7 ]
Chen, Pisin [5 ,6 ,7 ,8 ]
Yeom, Dong-han [9 ,10 ]
机构
[1] Univ Basque Country, UPV EHU, Dept Theoret Phys, Bilbao 48080, Spain
[2] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Spain
[3] Asia Pacific Ctr Theoret Phys, Pohang 37673, South Korea
[4] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[5] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[6] Natl Taiwan Univ, Ctr Theoret Sci, Taipei 10617, Taiwan
[7] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan
[8] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA
[9] Pusan Natl Univ, Dept Phys Educ, Busan 46241, South Korea
[10] Pusan Natl Univ, Res Ctr Dielect & Adv Matter Phys, Busan 46241, South Korea
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
quantum black holes; quantum cosmology; GR black holes;
D O I
10.1088/1475-7516/2020/11/002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The interior of a static Schwarzschild metric can be written in terms of two functions, similar to some models of anisotropic cosmology. With a suitable choice of canonical variables, we solve the Wheeler-DeWitt equation (WDW) inside the horizon of a Schwarzschild black hole. By imposing classicality near the horizon, and requiring boundedness of the wave function, we get a rather generic solution of the WDW equation, whose steepest-descent solution, i.e., the ridge of the wave function, coincides nicely with the classical trajectory. However, there is an ambiguity in defining the arrow of time which leads to two possible interpretations - (i) if there is only one arrow of time, one can infer that the steepest-descent of the wave function follows the classical trajectory throughout: coming from the event horizon and going all the way down to the singularity, while (ii) if there are two different arrows of time in two separate regimes, it can be inferred that the steepest-descent of the wave function comes inwards from the event horizon in one region while it moves outwards from the singularity in the other region, and there exists an annihilation process of these two parts of the wave function inside the horizon. Adopting the second interpretation could shed light on the information loss paradox: as time goes on, probabilities for histories that include black holes and singularities decay to zero and eventually only trivial geometries dominate.
引用
下载
收藏
页数:21
相关论文
共 50 条
  • [1] Annihilation-to-nothing: DeWitt boundary condition inside a black hole
    Brahma, Suddhasattwa
    Chen, Che-Yu
    Yeom, Dong-han
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (09):
  • [2] Annihilation-to-nothing: DeWitt boundary condition inside a black hole
    Suddhasattwa Brahma
    Che-Yu Chen
    Dong-han Yeom
    The European Physical Journal C, 82
  • [3] Gravitational lensing by a quantum deformed Schwarzschild black hole
    Lu, Xu
    Xie, Yi
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (07):
  • [4] Quantum gravitational corrections to the entropy of a Schwarzschild black hole
    Calmet, Xavier
    Kuipers, Folkert
    PHYSICAL REVIEW D, 2021, 104 (06)
  • [5] Gravitational lensing by a quantum deformed Schwarzschild black hole
    Xu Lu
    Yi Xie
    The European Physical Journal C, 2021, 81
  • [6] Final state boundary condition of the Schwarzschild black hole
    Ahn, Doyeol
    PHYSICAL REVIEW D, 2006, 74 (08)
  • [7] Quantum entropy of the Schwarzschild black hole due to gravitational perturbations
    Chen, SB
    Jing, JL
    CHINESE PHYSICS LETTERS, 2004, 21 (06) : 1006 - 1008
  • [8] GRAVITATIONAL RADIATION IN PRESENCE OF A SCHWARZSCHILD BLACK HOLE - BOUNDARY VALUE SEARCH
    DAVIS, M
    RUFFINI, R
    LETTERE AL NUOVO CIMENTO, 1971, 2 (23): : 1165 - &
  • [9] Strong Gravitational Lensing for the Quantum-Modified Schwarzschild Black Hole
    Zhang, Ruanjing
    Lin, Jian
    Huang, Qihong
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (01) : 387 - 396
  • [10] Strong Gravitational Lensing for the Quantum-Modified Schwarzschild Black Hole
    Ruanjing Zhang
    Jian Lin
    Qihong Huang
    International Journal of Theoretical Physics, 2021, 60 : 387 - 396