Production of solar CO via two-step neodymium oxide based thermochemical CO2 splitting cycle

被引:1
|
作者
Bhosale, Rahul R. [1 ]
机构
[1] Qatar Univ, Coll Engn, Dept Chem Engn, Doha, Qatar
关键词
Neodymium oxide; CO2; splitting; Thermal reduction; Solar CO; Thermal analysis; Process efficiency; THERMODYNAMIC ANALYSIS; HYDROGEN-PRODUCTION; SYNGAS PRODUCTION; REDOX REACTIONS; ZN/ZNO; EFFICIENCY; CERIA; H2O; PR; TB;
D O I
10.1016/j.fuel.2020.118803
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Detailed thermodynamic scrutiny of the solar thermochemical neodymium oxide-based CO2 splitting (Nd-CS) cycle is reported. The thermal reduction (TR) and CO2 splitting (CS) reaction temperatures required for the operation of the Nd-CS cycle were determined. The equilibrium compositions of Nd2O3, NdO, and O-2 exhibit that the initiation of the TR of Nd2O3 is feasible at 1982 K, and the complete conversion is possible at 2232 K. As per the delta G analysis, the CS reaction was feasible at all temperatures above 300 K. After understanding the chemical thermodynamic equilibrium of the Nd-CS cycle, the efficiency analysis was performed by using the HSC Chemistry 9.9 software. The results obtained via the efficiency analysis shows that the Nd-CS cycle was capable of attaining the highest possible eta(so)(lar)(-to-fuel-Nd) = 9.45% at partial TR of Nd2O3 = 55% (T-H = 2154 K). Application of HR = 20%, 40%, 60%, 80%, and 100%, improved eta(solar)(-to-fuel-Nd-CS) at TR-Nd = 55% (T-H = 2154 K) up to 10.51%, 11.84%, 13.55%, 15.85%, and 19.09%, respectively.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Perovskite oxide redox materials for two-step solar thermochemical CO2 splitting
    Tran, Ha Ngoc Ngan
    Li, Wei
    Liu, Xingbo
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [2] CO2 splitting in an aerosol flow reactor via the two-step Zn/ZnO solar thermochemical cycle
    Loutzenhiser, Peter G.
    Galvez, M. Elena
    Hischier, Illias
    Graf, Aron
    Steinfeld, Aldo
    CHEMICAL ENGINEERING SCIENCE, 2010, 65 (05) : 1855 - 1864
  • [3] Reactivity of Ni, Cr and Zr doped ceria in CO2 splitting for CO production via two-step thermochemical cycle
    Zhu, Liya
    Lu, Youjun
    Li, Feng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (30) : 13754 - 13763
  • [4] Two-step electro-thermochemical cycle for CO2 splitting in a solid oxide electrochemical cell
    Pan, Heng
    Zhao, Yuhao
    He, Feiyu
    Zhu, Liya
    Wang, Zhaolu
    Li, Yihang
    Lu, Youjun
    APPLIED ENERGY, 2025, 380
  • [5] CO2 SPLITTING IN A HOT-WALL AEROSOL REACTOR VIA THE TWO-STEP Zn/ZnO SOLAR THERMOCHEMICAL CYCLE
    Loutzenhiser, Peter G.
    Galvez, M. Elena
    Hischier, Illias
    Stamatiou, Anastasia
    Steinfeld, Aldo
    ES2009: PROCEEDINGS OF THE ASME 3RD INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, VOL 2, 2009, : 415 - 420
  • [6] CO2 splitting via two-step solar thermochemical cycles via metal oxide redox reactions:Thermodynamic and kinetic analyses
    Loutzenhiser, Peter G.
    Graf, Aron
    Stamatiou, Anastasia
    Steinfeld, Aldo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [7] The study of CO2 splitting kinetics on LSM perovskite oxides in the solar-driven two-step thermochemical cycle
    Pan, Heng
    Zhao, Yuhao
    Wang, Zhaolu
    Lu, Youjun
    Li, Yihang
    APPLIED CATALYSIS A-GENERAL, 2024, 672
  • [8] Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide - A review
    Mao, Yanpeng
    Gao, Yibo
    Dong, Wei
    Wu, Han
    Song, Zhanlong
    Zhao, Xiqiang
    Sun, Jing
    Wang, Wenlong
    APPLIED ENERGY, 2020, 267 (267)
  • [9] Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production
    Charvin, Patrice
    Abanades, Stephane
    Flamant, Gilles
    Lemort, Florent
    ENERGY, 2007, 32 (07) : 1124 - 1133
  • [10] CO2 Splitting via the Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions
    Loutzenhiser, Peter G.
    Meier, Anton
    Gstoehl, Daniel
    Steinfeld, Aldo
    ADVANCES IN CO2 CONVERSION AND UTILIZATION, 2010, 1056 : 25 - 30