When every finitely generated flat module is projective

被引:21
|
作者
Puninski, G [1 ]
Rothmaler, P [1 ]
机构
[1] Ohio State Univ, Dept Math, Lima, OH 45804 USA
关键词
flat module; projective module;
D O I
10.1016/j.jalgebra.2003.10.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the class of rings over which every finitely generated flat right module is projective. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:542 / 558
页数:17
相关论文
共 50 条
  • [1] When every projective module is a direct sum of finitely generated modules
    McGovern, Warren Wm.
    Puninski, Gena
    Rothmaler, Philipp
    JOURNAL OF ALGEBRA, 2007, 315 (01) : 454 - 481
  • [2] When every flat ideal is finitely projective
    Cheniour F.
    Mahdou N.
    Arabian Journal of Mathematics, 2013, 2 (3) : 255 - 261
  • [3] When every S-flat module is (flat) projective
    Bennis, Driss
    Bouziri, Ayoub
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (10) : 4480 - 4491
  • [4] ON RINGS OVER WHICH EVERY FLAT LEFT MODULE IS FINITELY PROJECTIVE
    ZHU, SG
    JOURNAL OF ALGEBRA, 1991, 139 (02) : 311 - 321
  • [5] When every self-small module is finitely generated
    Breaz, Simion
    Zemlicka, Jan
    JOURNAL OF ALGEBRA, 2007, 315 (02) : 885 - 893
  • [6] When every finitely projective ideal is projective
    Najib Mahdou
    Sanae Moussaoui
    Moutu Abdou Salam Moutui
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 579 - 586
  • [7] When every finitely projective ideal is projective
    Mahdou, Najib
    Moussaoui, Sanae
    Moutui, Moutu Abdou Salam
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (03): : 579 - 586
  • [8] Erratum: When every finitely projective ideal is projective
    Najib Mahdou
    Sanae Moussaoui
    Moutu Abdou Salam Moutui
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 297 - 297
  • [9] Rings satisfying every finitely generated module has a Gorenstein projective (pre)envelope
    Mao, Lixin
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (05) : 2010 - 2022
  • [10] When Every Gorenstein Projective (Resp. Flat) Module is Strongly Gorenstein Projective (Resp. Flat)
    Mahdou, Najib
    Tamekkante, Mohammed
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2010, 1 (01): : 15 - 25