Biophysical Evaluation of Land-Cover Products for Land-Climate Modeling

被引:5
|
作者
Ge, Jianjun [1 ]
Torbick, Nathan [2 ]
Qi, Jiaguo [3 ,4 ]
机构
[1] Oklahoma State Univ, Dept Geog, Stillwater, OK 74078 USA
[2] Appl Geosolut LLC, Durham, NH USA
[3] Michigan State Univ, Dept Geog, E Lansing, MI 48824 USA
[4] Michigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48824 USA
来源
EARTH INTERACTIONS | 2009年 / 13卷
基金
美国国家科学基金会;
关键词
Land-cover product; Climate modeling; Leaf area index; SURFACE PARAMETERIZATION SIB2; REMOTELY-SENSED DATA; CHARACTERISTICS DATABASE; TERRESTRIAL ECOSYSTEMS; ACCURACY ASSESSMENT; ATMOSPHERIC GCMS; SATELLITE DATA; LEAF-AREA; MODIS; ALGORITHMS;
D O I
10.1175/2009EI276.1
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The need for accurate characterization of the land surface as boundary conditions in climate models has been recognized widely in the climate modeling community. A large number of land-cover datasets are currently used in climate models either to better represent surface conditions or to study the impacts of surface changes. Deciding upon land-cover datasets can be challenging because the datasets are made with different sensors, ranging methodologies, and varying classification objectives. A new statistical measure Q was developed to evaluate land-cover datasets in land-climate interaction research. This measure calculates biophysical precision of land-cover datasets using 1-km monthly Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) product. This method aggregates within-class biophysical years into a single statistic. A smaller mean Q value for a land-cover product indicates more precise biophysical characterization within the classes. As an illustration, four land-cover products were assessed in the East Africa region: Global Land Cover 2000 (GLC2000), MODIS land cover, Olson Global Ecosystems (OGE), and Land Ecosystem-Atmosphere Feedback (LEAF) model. The evaluation was conducted at three different spatial scales corresponding to 30 x 30, 50 x 50, and 100 x 100 km quadrates. The Q measure found that GLC2000 ranked higher compared to the other three land-cover products for every quadrate size. For the 30 x 30 km quadrate size GLC2000 was significantly better than LEAF, which is currently used in the Regional Atmospheric Modeling System. The statistic ranks MODIS land cover above OGE, which is above LEAF. As quadrate size increases, differences between Q decrease indicating greater uncertainty at coarser resolution. The utility of the measure is that it can be applied to any continuous parameter over any scale (space or time) to evaluate the biophysical precision of any land-cover dataset.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Biophysical evaluation of five land covers for land-climate interaction modeling in east Africa
    Ge, J
    Qi, J
    Torbick, N
    [J]. IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 5009 - 5011
  • [2] Land-cover categories versus biophysical attributes to monitor land-cover change by remote sensing
    Lambin, E
    [J]. OBSERVING LAND FROM SPACE: SCIENCE, CUSTOMERS AND TECHNOLOGY, 2000, 4 : 137 - 142
  • [3] A methodology to generate a synergetic land-cover map by fusion of different land-cover products
    Perez-Hoyos, A.
    Garcia-Haro, F. J.
    San-Miguel-Ayanz, J.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2012, 19 : 72 - 87
  • [4] A land-cover data infrastructure for measurement, modeling, and analysis of land-cover change dynamics
    Aspinall, R
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2002, 68 (10): : 1101 - 1105
  • [5] Holocene land-cover reconstructions for studies on land cover-climate feedbacks
    Gaillard, M. -J.
    Sugita, S.
    Mazier, F.
    Trondman, A. -K.
    Brostrom, A.
    Hickler, T.
    Kaplan, J. O.
    Kjellstrom, E.
    Kokfelt, U.
    Kunes, P.
    Lemmen, C.
    Miller, P.
    Olofsson, J.
    Poska, A.
    Rundgren, M.
    Smith, B.
    Strandberg, G.
    Fyfe, R.
    Nielsen, A. B.
    Alenius, T.
    Balakauskas, L.
    Barnekow, L.
    Birks, H. J. B.
    Bjune, A.
    Bjorkman, L.
    Giesecke, T.
    Hjelle, K.
    Kalnina, L.
    Kangur, M.
    van der Knaap, W. O.
    Koff, T.
    Lageras, P.
    Latalowa, M.
    Leydet, M.
    Lechterbeck, J.
    Lindbladh, M.
    Odgaard, B.
    Peglar, S.
    Segerstrom, U.
    von Stedingk, H.
    Seppa, H.
    [J]. CLIMATE OF THE PAST, 2010, 6 (04) : 483 - 499
  • [6] Modeling land-climate coupling in Europe: Impact of land surface representation on climate variability and extremes
    Lorenz, R.
    Davin, E. L.
    Seneviratne, S. I.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [7] A Bayesian Based Method to Generate a Synergetic Land-Cover Map from Existing Land-Cover Products
    Xu, Guang
    Zhang, Hairong
    Chen, Baozhang
    Zhang, Huifang
    Yan, Jianwu
    Chen, Jing
    Che, Mingliang
    Lin, Xiaofeng
    Dou, Xianming
    [J]. REMOTE SENSING, 2014, 6 (06): : 5589 - 5613
  • [8] Land-cover classification and forest biophysical retrieval from SAR
    Dobson, MC
    Bergen, K
    [J]. GREAT LAKES, GREAT FORESTS, PROCEEDINGS, 1999, : 98 - 106
  • [9] Land-Use/Land-Cover Change and Its Impacts on Weather and Climate
    Dev Niyogi
    Rezaul Mahmood
    Jimmy O. Adegoke
    [J]. Boundary-Layer Meteorology, 2009, 133 : 297 - 298
  • [10] Land-Use/Land-Cover Change and Its Impacts on Weather and Climate
    Niyogi, Dev
    Mahmood, Rezaul
    Adegoke, Jimmy O.
    [J]. BOUNDARY-LAYER METEOROLOGY, 2009, 133 (03) : 297 - 298