On Relatively Solid Convex Cones in Real Linear Spaces

被引:7
|
作者
Novo, Vicente [1 ]
Zalinescu, Constantin [2 ]
机构
[1] Univ Nacl Educ Distancia, Dept Matemat Aplicada, ETSI Ind, Calle Juan del Rosal 12,Ciudad Univ, Madrid 28040, Spain
[2] Romanian Acad, Octav Mayer Inst Math, Iasi Branch, Iasi 700505, Romania
关键词
Algebraic relative interior; Algebraic dual cone; Algebraic and vectorial closures; Topological dual cone; Convex core topology; VECTOR OPTIMIZATION; PROPER EFFICIENCY; WEAK;
D O I
10.1007/s10957-020-01773-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Having a convex cone K in an infinite-dimensional real linear space X, Adan and Novo stated (in J Optim Theory Appl 121:515-540, 2004) that the relative algebraic interior of K is nonempty if and only if the relative algebraic interior of the positive dual cone of K is nonempty. In this paper, we show that the direct implication is not true even if K is closed with respect to the finest locally convex topology tau(c) on X, while the reverse implication is not true if K is not tau(c)-closed. However, in the main result of this paper, we prove that the latter implication is true if the algebraic interior of the positive dual cone of K is nonempty; the general case remains an open problem. As a by-product, a result about separation of cones is obtained that improves Theorem 2.2 of the work mentioned above.
引用
收藏
页码:277 / 290
页数:14
相关论文
共 50 条
  • [1] On Relatively Solid Convex Cones in Real Linear Spaces
    Vicente Novo
    Constantin Zălinescu
    [J]. Journal of Optimization Theory and Applications, 2021, 188 : 277 - 290
  • [2] Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces
    Guenther, Christian
    Khazayel, Bahareh
    Tammer, Christiane
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 193 (1-3) : 408 - 442
  • [3] Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces
    Christian Günther
    Bahareh Khazayel
    Christiane Tammer
    [J]. Journal of Optimization Theory and Applications, 2022, 193 : 408 - 442
  • [4] ON THE INTRINSIC CORE OF CONVEX CONES IN REAL LINEAR SPACES
    Khazayel, Bahareh
    Farajzadeh, Ali
    Gunther, Christian
    Tammer, Christiane
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (02) : 1276 - 1298
  • [5] Real and complex linear extensions for locally convex cones
    Roth, W
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) : 437 - 454
  • [6] Convex cones in screw spaces
    Zlatanov, D
    Agrawal, S
    Gosselin, CM
    [J]. MECHANISM AND MACHINE THEORY, 2005, 40 (06) : 710 - 727
  • [7] CONVEX CONES IN FINITE-DIMENSIONAL REAL VECTOR-SPACES
    STUDENY, M
    [J]. KYBERNETIKA, 1993, 29 (02) : 180 - 200
  • [8] Existence Theorems for Linear Complementarity Problems on Solid Closed Convex Cones
    A. Hassouni
    A. Lahlou
    A. Lamghari
    [J]. Journal of Optimization Theory and Applications, 2005, 126 : 225 - 246
  • [9] Existence theorems for linear complementarity problems on solid closed convex cones
    Hassouni, A
    Lahlou, A
    Lamghari, A
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 126 (02) : 225 - 246