Direct detection of dark matter in universal bound states

被引:53
|
作者
Laha, Ranjan [1 ,2 ]
Braaten, Eric [2 ]
机构
[1] Ohio State Univ, CCAPP, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
来源
PHYSICAL REVIEW D | 2014年 / 89卷 / 10期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.89.103510
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the signatures for internal structure of dark matter in direct detection experiments in the context of asymmetric self-interacting dark matter. The self-interaction cross section of two dark matter particles at low energies is assumed to come close to saturating the S-wave unitarity bound, which requires the presence of a resonance near their scattering threshold. The universality of S-wave near-threshold resonances then implies that the low-energy scattering properties of a two-body bound state of dark matter particles are completely determined by its binding energy, irrespective of the underlying microphysics. The form factor for elastic scattering of the bound state from a nucleus and the possibility of break up of the bound state produce new signatures in the nuclear recoil energy spectrum. If these features are observed in experiments, it will give a smoking-gun signature for the internal structure of dark matter.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Directional detection of dark matter in universal bound states
    Laha, Ranjan
    PHYSICAL REVIEW D, 2015, 92 (08):
  • [2] Direct detection of bound states of asymmetric dark matter
    Coskuner, Ahmet
    Grabowska, Dorota M.
    Knapen, Simon
    Zurek, Kathryn M.
    PHYSICAL REVIEW D, 2019, 100 (03)
  • [3] Direct detection of dark matter bound to the Earth
    Catena, Riccardo
    Kouvaris, Chris
    PHYSICAL REVIEW D, 2017, 96 (06)
  • [4] Constraints on self-interaction cross-sections of dark matter in universal bound states from direct detection
    Angloher, G.
    Banik, S.
    Benato, G.
    Bento, A.
    Bertolini, A.
    Breier, R.
    Bucci, C.
    Burkhart, J.
    Cipelli, E.
    Canonica, L.
    D'Addabbo, A.
    Di Lorenzo, S.
    Einfalt, L.
    Erb, A.
    Feilitzsch, F., V
    Fichtinger, S.
    Fuchs, D.
    Garai, A.
    Ghete, V. M.
    Gorla, P.
    Guillaumon, P., V
    Gupta, S.
    Hauff, D.
    Jeskovsky, M.
    Jochum, J.
    Kaznacheeva, M.
    Kinast, A.
    Kuckuk, S.
    Kluck, H.
    Kraus, H.
    Langenkaemper, A.
    Mancuso, M.
    Marini, L.
    Mauri, B.
    Meyer, L.
    Mokina, V
    Olmi, M.
    Ortmann, T.
    Pagliarone, C.
    Pattavina, L.
    Petricca, F.
    Potzel, W.
    Povinec, P.
    Proebst, F.
    Pucci, F.
    Reindl, F.
    Rothe, J.
    Schaeffner, K.
    Schieck, J.
    Schoenert, S.
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (11):
  • [5] A balance for dark matter bound states
    Nozzoli, F.
    ASTROPARTICLE PHYSICS, 2017, 91 : 22 - 33
  • [6] Implications of Dark Matter bound states
    Mitridate, Andrea
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2018, 41 (1-2):
  • [7] Probing the Dark Sector with Dark Matter Bound States
    An, Haipeng
    Echenard, Bertrand
    Pospelov, Maxim
    Zhang, Yue
    PHYSICAL REVIEW LETTERS, 2016, 116 (15)
  • [8] Direct detection of dark matter
    Gaitskell, RJ
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, 2004, 54 : 315 - 359
  • [9] Direct detection of Dark Matter
    Belli, P.
    ROMA INTERNATIONAL CONFERENCE ON ASTROPARTICLE PHYSICS 2014 (RICAP-14), 2016, 121
  • [10] Dark Matter: Direct Detection
    Chardin, G.
    LOW TEMPERATURE DETECTORS LTD 13, 2009, 1185 : 615 - 622