Kolmogorov scaling and intermittency in Rayleigh-Taylor turbulence

被引:61
|
作者
Boffetta, G. [1 ,2 ,3 ]
Mazzino, A. [4 ,5 ]
Musacchio, S. [1 ,2 ,3 ]
Vozella, L. [4 ,5 ]
机构
[1] Univ Turin, Dipartimento Fis Gen, I-10125 Turin, Italy
[2] Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy
[3] CNR, ISAC, Sez Torino, I-10133 Turin, Italy
[4] Univ Genoa, Dipartmento Fis, Ist Nazl Fis Nucl, I-16146 Genoa, Italy
[5] Univ Genoa, CNISM, I-16146 Genoa, Italy
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 06期
关键词
convection; Navier-Stokes equations; Rayleigh-Taylor instability; turbulence; 3-DIMENSIONAL NUMERICAL SIMULATIONS; REYNOLDS-NUMBER; THERMAL-CONVECTION; SELF-SIMILARITY; VELOCITY-FIELD; IA-SUPERNOVAE; INSTABILITY; DEPENDENCE;
D O I
10.1103/PhysRevE.79.065301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Turbulence induced by Rayleigh-Taylor instability is a ubiquitous phenomenon with applications ranging from atmospheric physics and geophysics to supernova explosions and plasma confinement fusion. Despite its fundamental character, a phenomenological theory has been proposed only recently and several predictions are untested. In this Rapid Communication we confirm spatiotemporal predictions of the theory by means of direct numerical simulations at high resolution and we extend the phenomenology to take into account intermittency effects. We show that scaling exponents are indistinguishable from those of Navier-Stokes turbulence at comparable Reynolds number, a result in support of the universality of turbulence with respect to the forcing mechanism. We also show that the time dependence of Rayleigh, Reynolds, and Nusselt numbers realizes the Kraichnan scaling regime associated with the ultimate state of thermal convection.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Kolmogorov scaling and intermittency in Rayleigh-Taylor turbulence
    Boffetta, G.
    Musacchio, S.
    Mazzino, A.
    Vozella, L.
    [J]. ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 721 - 724
  • [2] Intermittency in the miscible Rayleigh-Taylor turbulence
    Celani, Antonio
    Mazzino, Andrea
    Vozella, Lara
    [J]. ADVANCES IN TURBULENCE XI, 2007, 117 : 404 - +
  • [3] Rayleigh-Taylor turbulence is nothing like Kolmogorov turbulence in the self-similar regime
    Poujade, Olivier
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)
  • [4] Scaling law of mixing layer in cylindrical Rayleigh-Taylor turbulence
    Zhao, Zhiye
    Wang, Pei
    Liu, Nan-Sheng
    Lu, Xi-Yun
    [J]. PHYSICAL REVIEW E, 2021, 104 (05)
  • [5] Anomalous scaling of three-dimensional Rayleigh-Taylor turbulence
    Matsumoto, Takeshi
    [J]. PHYSICAL REVIEW E, 2009, 79 (05):
  • [6] Rotating Rayleigh-Taylor turbulence
    Boffetta, G.
    Mazzino, A.
    Musacchio, S.
    [J]. PHYSICAL REVIEW FLUIDS, 2016, 1 (05):
  • [7] Reactive Rayleigh-Taylor turbulence
    Chertkov, M.
    Lebedev, V.
    Vladimirova, N.
    [J]. JOURNAL OF FLUID MECHANICS, 2009, 633 : 1 - 16
  • [8] Incompressible Rayleigh-Taylor Turbulence
    Boffetta, Guido
    Mazzino, Andrea
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, VOL 49, 2017, 49 : 119 - 143
  • [9] Phenomenology of Rayleigh-Taylor turbulence
    Chertkov, M
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (11)
  • [10] EFFECTS OF TURBULENCE ON RAYLEIGH-TAYLOR INSTABILITY
    CLAUSER, MJ
    BAKER, L
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1189 - 1189