Sensitization control in AISI 316L(N) austenitic stainless steel: Defining the role of the nature of grain boundary

被引:50
|
作者
Parvathavarthini, N. [1 ]
Mulki, S. [2 ]
Dayal, R. K. [1 ]
Samajdar, I. [2 ]
Mani, K. V. [3 ]
Raj, Baldev [1 ]
机构
[1] Indira Gandhi Ctr Atom Res, Corros Sci & Technol Div, Mat Dev & Characterisat Grp, Met & Mat Grp, Kalpakkam 603102, Tamil Nadu, India
[2] Indian Inst Technol, Dept Met Engn & Mat Sci, Mumbai 400076, Maharashtra, India
[3] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India
关键词
Stainless steel; Polarization; Intergranular corrosion; CORROSION BEHAVIOR; INTERGRANULAR CORROSION; CHARACTER-DISTRIBUTION; CARBIDE PRECIPITATION; CHLORIDE MEDIA; 304-STAINLESS-STEEL; COPPER; CU; POLARIZATION; RESISTANCE;
D O I
10.1016/j.corsci.2009.05.045
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two grades of AISI 316L(N) austenitic stainless steels differing only in copper content (0.083 and 0.521 wt.%), showed remarkable difference in resistance to sensitization and susceptibility to intergranular corrosion. Different thermal treatments were carried out with an overall objective of altering the nature of the grain boundary. An attempt was made to correlate the degree of sensitization (DOS) with various microstructural parameters such as grain size and grain boundary nature. No clear trend could be established between the individual parameters and DOS. Effective grain boundary energy (EGBE), which is a combined parameter showed clear trend with DOS. The presence of 0.521 wt.% of copper brings down EGBE remarkably leading to improved resistance to sensitization. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2144 / 2150
页数:7
相关论文
共 50 条
  • [1] Grain boundary networks in AISI 316L stainless steel
    Gertsman, VY
    Janecek, M
    Tangri, K
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1996, 157 (02): : 241 - 247
  • [2] On Grain Boundary Engineering for a 316L Austenitic Stainless Steel
    Dolzhenko, Pavel
    Tikhonova, Marina
    Odnobokova, Marina
    Kaibyshev, Rustam
    Belyakov, Andrey
    [J]. METALS, 2022, 12 (12)
  • [3] Grain Boundary Engineering for Control of Fatigue Fracture in 316L Austenitic Stainless Steel
    Kobayashi, Shigeaki
    Ogou, Satoshi
    Tsurekawa, Sadahiro
    [J]. MATERIALS TRANSACTIONS, 2019, 60 (05) : 623 - 630
  • [4] Grain boundary character distribution and sensitisation behaviour of grain boundary engineered stable austenitic stainless steel (AISI 316L)
    Hou, G.
    Luo, H.
    Lv, J.
    [J]. MATERIALS SCIENCE AND TECHNOLOGY, 2014, 30 (12) : 1447 - 1452
  • [5] Sensitization evaluation of the austenitic stainless steel AISI 304L, 316L, 321 and 347
    Lima, AS
    Nascimento, AM
    Abreu, HFG
    De Lima-Neto, P
    [J]. JOURNAL OF MATERIALS SCIENCE, 2005, 40 (01) : 139 - 144
  • [6] Sensitization evaluation of the austenitic stainless steel AISI 304L, 316L, 321 and 347
    A. S. Lima
    A. M. Nascimento
    H. F. G. Abreu
    P. de Lima-Neto
    [J]. Journal of Materials Science, 2005, 40 : 139 - 144
  • [7] GRAIN-BOUNDARY SENSITIZATION AND DESENSITIZATION DURING THE AGING OF 316L(N) AUSTENITIC STAINLESS-STEELS
    TEKIN, A
    MARTIN, JW
    SENIOR, BA
    [J]. JOURNAL OF MATERIALS SCIENCE, 1991, 26 (09) : 2458 - 2466
  • [8] The influence of recrystallized structure and texture on the sensitization behaviour of a stable austenitic stainless steel (AISI 316L)
    Chowdhury, Sandip Ghosh
    Singh, Raghuvir
    [J]. SCRIPTA MATERIALIA, 2008, 58 (12) : 1102 - 1105
  • [9] Study on laser welding of AISI 316L austenitic stainless steel
    Dontu, O.
    Ocana Moreno, J. L.
    Ciobanu, R.
    Branzei, M.
    Besnea, D.
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2015, 17 (9-10): : 1444 - 1449
  • [10] Deformation twinning in AISI 316L austenitic stainless steel: role of strain and strain path
    Mishra, S.
    Narasimhan, K.
    Samajdar, I.
    [J]. MATERIALS SCIENCE AND TECHNOLOGY, 2007, 23 (09) : 1118 - 1126