Dynamics of a Four-Dimensional System with Cubic Nonlinearities

被引:1
|
作者
Rech, Paulo C. [1 ]
机构
[1] Univ Estado Santa Catarina, Dept Fis, BR-89219710 Joinville, Brazil
来源
关键词
Parameter plane; period-doubling bifurcation; chaos; multistability; periodicity;
D O I
10.1142/S0218127421500127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a three-parameter four-dimensional dynamical system, which is modeled by a set of four first-order nonlinear ordinary differential equations, each of which contains a crossed cubic term. Dynamical behaviors are characterized in the parameter space of the model. In fact, we use some cross-sections of a three-dimensional parameter-space, namely three related parameter planes, to locate regular and chaotic regions, as well as multistability regions. Lyapunov exponents spectra, bifurcation diagrams, and phase-space portraits are used to complete the analysis.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On the Ultimate Dynamics of the Four-Dimensional Rossler System
    Starkov, Konstantin E.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (11):
  • [2] Complex Dynamics of a Four-Dimensional Circuit System
    Wang, Haijun
    Fan, Hongdan
    Pan, Jun
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (14):
  • [3] A four-dimensional cousin of the Segre cubic
    Manivel, Laurent
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (03) : 1089 - 1114
  • [4] GLOBAL DYNAMICS AND BIFURCATIONS IN A FOUR-DIMENSIONAL REPLICATOR SYSTEM
    Wang, Yuashi
    Wu, Hong
    Ruan, Shigui
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (01): : 259 - 271
  • [5] A multistage linearisation approach to a four-dimensional hyperchaotic system with cubic nonlinearity
    Motsa, Sandile S.
    Sibanda, Precious
    [J]. NONLINEAR DYNAMICS, 2012, 70 (01) : 651 - 657
  • [6] A multistage linearisation approach to a four-dimensional hyperchaotic system with cubic nonlinearity
    Sandile S. Motsa
    Precious Sibanda
    [J]. Nonlinear Dynamics, 2012, 70 : 651 - 657
  • [7] DEFORMATION CLASSES OF REAL FOUR-DIMENSIONAL CUBIC HYPERSURFACES
    Finashin, S.
    Kharlamov, V.
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2008, 17 (04) : 677 - 707
  • [8] On a four-dimensional chaotic system
    Qi, GY
    Du, SZ
    Chen, GR
    Chen, ZQ
    Yuan, ZZ
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (05) : 1671 - 1682
  • [9] Dynamics of a Four-Dimensional Economic Model
    Moza, Gheorghe
    Brandibur, Oana
    Gaina, Ariana
    [J]. MATHEMATICS, 2023, 11 (04)
  • [10] Four-dimensional black holes in Einsteinian cubic gravity
    Bueno, Pablo
    Cano, Pablo A.
    [J]. PHYSICAL REVIEW D, 2016, 94 (12)