dynamic latent variables;
Markov chain Monte Carlo;
maximum likelihood;
simulation smoother;
D O I:
10.1080/07474930600713424
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
In this paper, efficient importance sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate stochastic volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of high-dimensional interdependent integrals. It can be used to carry out ML-estimation of SV models as well as simulation smoothing where the latent volatilities are sampled at once. Based on this EIS simulation smoother, a Bayesian Markov chain Monte Carlo (MCMC) posterior analysis of the parameters of SV models can be performed.
机构:
Univ Sheffield, Dept Probabil & Stat, Sheffield S3 7RH, S Yorkshire, EnglandUniv Sheffield, Dept Probabil & Stat, Sheffield S3 7RH, S Yorkshire, England