A K-means Clustering Algorithm Based on the Distribution of SIFT

被引:0
|
作者
Lv, Hui [1 ]
Huang, Xianglin
Yang, Lifang
Liu, Tao [2 ]
Wang, Ping [3 ]
机构
[1] Commun Univ China, Sch Comp Sci, Beijing, Peoples R China
[2] SIPO, Patent Off, Patent Examinat Cooperat Ctr, Beijing, Peoples R China
[3] Anhui Vocat Coll Press & Publishing, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bag-of-Words based Image retrieval recently became the research hotspot. To improve the performance of visual word training in Bag-of-Words based image retrieval system, a k-means clustering algorithm based on the distribution of SIFT (Scale Invariant Feature Transform) feature data on each dimension is proposed. The initial clustering centers are obtained by analyzing the distribution of SIFT feature data on each dimension, and combing the iDistance method which is used to partition the data space in high-dimensional indexing according to the data distribution adaptively. Then the AKM (Approximate k-means) is used to do cluster on the sample feature data, train the visual words and get the visual vocabulary finally. In AKM, the k-d tree is built on the cluster centers at the beginning of each iteration to increase speed. The image retrieval system is constructed to verify the performance of our proposed method. Experiments are carried out on the oxford buildings 5k datasets which have 11 landmarks and the mAP (mean Average Precision) is used to evaluate the performance of image retrieval. Our proposed method achieves 31.9% compared to the AKM's 29.8%, so it is clear that our proposed method optimizes the visual words training process and finally improves the bag-of-words based image retrieval performance.
引用
收藏
页码:1301 / 1304
页数:4
相关论文
共 50 条
  • [1] A k-means based clustering algorithm
    Bloisi, Domenico Daniele
    Locchi, Luca
    [J]. COMPUTER VISION SYSTEMS, PROCEEDINGS, 2008, 5008 : 109 - 118
  • [2] Research on k-means Clustering Algorithm An Improved k-means Clustering Algorithm
    Shi Na
    Liu Xumin
    Guan Yong
    [J]. 2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 63 - 67
  • [3] A Clustering Method Based on K-Means Algorithm
    Li, Youguo
    Wu, Haiyan
    [J]. INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS SCIENCE, 2012, 25 : 1104 - 1109
  • [4] A Fuzzy Clustering Algorithm Based on K-means
    Yan, Zhen
    Pi, Dechang
    [J]. ECBI: 2009 INTERNATIONAL CONFERENCE ON ELECTRONIC COMMERCE AND BUSINESS INTELLIGENCE, PROCEEDINGS, 2009, : 523 - 528
  • [5] A GENERALIZED k-MEANS PROBLEM FOR CLUSTERING AND AN ADMM-BASED k-MEANS ALGORITHM
    Ling, Liyun
    Gu, Yan
    Zhang, Su
    Wen, Jie
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (06) : 2089 - 2115
  • [6] A Clustering K-means Algorithm Based on Improved PSO Algorithm
    Tan, Long
    [J]. 2015 FIFTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT2015), 2015, : 940 - 944
  • [7] Chinese text clustering algorithm based k-means
    Yao, Mingyu
    Pi, Dechang
    Cong, Xiangxiang
    [J]. 2012 INTERNATIONAL CONFERENCE ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING (ICMPBE2012), 2012, 33 : 301 - 307
  • [8] Feature Selection Algorithm Based on K-means Clustering
    Tang, Xue
    Dong, Min
    Bi, Sheng
    Pei, Maofeng
    Cao, Dan
    Xie, Cheche
    Chi, Sunhuang
    [J]. 2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 1522 - 1527
  • [9] A Credits Based Scheduling Algorithm with K-means Clustering
    Sharma, Vrajesh
    Bala, Manju
    [J]. 2018 FIRST INTERNATIONAL CONFERENCE ON SECURE CYBER COMPUTING AND COMMUNICATIONS (ICSCCC 2018), 2018, : 82 - 86
  • [10] An Effective K-means Clustering Based SVM Algorithm
    Yao, YuKai
    Liu, Yang
    Li, Zhao
    Chen, XiaoYun
    [J]. MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 1344 - 1348