Spatio-temporal analysis using a multiscale hierarchical ecoregionalization

被引:20
|
作者
Handcock, RN [1 ]
Csillag, F [1 ]
机构
[1] Univ Toronto, Dept Geog, Mississauga, ON L5L 1C6, Canada
来源
关键词
D O I
10.14358/PERS.70.1.101
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
We address the need for spatio-temporally explicit analysis techniques linking the scales of ecosystem, observation, and analysis, using a hierarchical ecoregionalization to examine,remotely sensed data at spatial scales of ecological and management significance. Long- and short-term changes in vegetation functioning are a key indicator of ecological processes. We predict net primary production (NPP) at monthly temporal resolution for 16 years (1981-1996) at an 8-km spatial resolution for the approximately 10(6) km(2) area of Ontario, Canada. We calculate landscape-level light use efficiency values that are tuned to monthly and long-term ecoclimates, and the Normalized Difference Vegetation Index from the NOAA-AVHRR sensor. Applying our spatio-temporal analysis tools, we show evidence for increasing NPP across most of the province. This increase varies seasonally and annually across Ontario, and its magnitude and distribution varies with the spatial scales of analysis. Bridging the gap between local and global studies, this research supports monitoring and analysis of ecosystem functions.
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条
  • [1] Ecoregionalization assessment: Spatio-temporal analysis of net primary production across Ontario
    Handcock, RN
    Csillag, F
    [J]. ECOSCIENCE, 2002, 9 (02): : 219 - 230
  • [2] Multiscale recurrence analysis of spatio-temporal data
    Riedl, M.
    Marwan, N.
    Kurths, J.
    [J]. CHAOS, 2015, 25 (12)
  • [3] Identification of multiscale spatio-temporal dynamical systems using a wavelet multiresolution analysis
    Guo, L. Z.
    Billings, S. A.
    Coca, D.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2009, 40 (11) : 1115 - 1126
  • [4] Extracting Temporal Correlations Using Hierarchical Spatio-Temporal Feature Maps
    Machireddy, Amrutha
    Gowgi, Prayag
    Garani, Shayan Srinivasa
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [5] Action Recognition with Multiscale Spatio-Temporal Contexts
    Wang, Jiang
    Chen, Zhuoyuan
    Wu, Ying
    [J]. 2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [6] Spatio-Temporal Multiscale Denoising of Fluoroscopic Sequence
    Amiot, Carole
    Girard, Catherine
    Chanussot, Jocelyn
    Pescatore, Jeremie
    Desvignes, Michel
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (06) : 1565 - 1574
  • [7] Spatio-temporal action detection and localization using a hierarchical LSTM
    Ramaswamy, Akshaya
    Seemakurthy, Karthik
    Gubbi, Jayavardhana
    Purushothaman, Balamuralidhar
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 3303 - 3312
  • [8] Analysis of tornado counts with hierarchical Bayesian spatio-temporal models
    Anderson, CJ
    Wikle, CK
    [J]. 21ST CONFERENCE ON SEVERE LOCAL STORMS, 2002, : 459 - 460
  • [9] Scalable spatio-temporal video indexing using sparse multiscale patches
    Piro, Paolo
    Anthoine, Sandrine
    Debreuve, Eric
    Barlaud, Michel
    [J]. CBMI: 2009 INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING, 2009, : 95 - 100
  • [10] Network Analysis Using Spatio-Temporal Patterns
    Miranda, Gisele H. B.
    Machicao, Jeaneth
    Bruno, Odemir M.
    [J]. 5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016), 2016, 738