Time-series MODIS satellite and in-situ data for spatio-temporal distribution of aerosol pollution assessment over Bucharest metropolitan area

被引:1
|
作者
Zoran, Maria A. [1 ]
Savastru, Roxana S. [1 ]
Savastru, Dan M. [1 ]
机构
[1] MG5 Bucharest Magurele, Remote Sensing Dept, Natl Inst R&D Optoelect, Bucharest 077125, Romania
关键词
aerosol pollution; MODIS satellite data; PM10 and PM2.5; in-situ data; Bucharest; Romania; HEALTH; PM2.5;
D O I
10.1117/12.2195477
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
With the increasing industrialization and urbanization, especially in the metropolis regions, aerosol pollution has highly negative effects on environment. Urbanization is responsible of three major changes that may have impact on the urban atmosphere: replacement of the natural surfaces with buildings and impermeable pavements, heat of anthropogenic origin and air pollution. The importance of aerosols for radiative and atmospheric chemical processes is widely recognized. They can scatter and/or absorb solar radiation leading to changes of the radiation budget. Also, the so-called indirect effect of aerosols describes the cloud-aerosol interactions, which can modify the chemical and physical processes in the atmosphere. Their high spatial variability and short lifetime make spaceborne sensors especially well suited for their observation. Remote sensing is a key application in global-change science and urban climatology. Since the launch of the MODerate resolution Imaging Spectroradiometer (MODIS) there is detailed global aerosol information available, both over land and oceans The aerosol parameters can be measured directly in situ or derived from satellite remote sensing observations. All these methods are important and complementary. The objective of this work was to document the seasonal and inter-annual patterns of the aerosol pollution particulate matter in two size fractions (PM10 and PM2.5) loading and air quality index (AQI) over Bucharest metropolitan area in Romania based on in-situ and MODIS Terra/Aqua satellite time series data over 2010-2012 period. Accurate information of urban air pollution is required for environmental and health policy, but also to act as a basis for designing and stratifying future monitoring networks.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Urban green spatio-temporal changes assessment through time-series satellite data
    Zoran, Maria A.
    Savastru, Roxana S.
    Savastru, Dan M.
    Tautan, Marina N.
    Baschir, Laurentiu A.
    [J]. EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS VI, 2015, 9644
  • [2] Spatio-Temporal Distribution of Aerosol and Cloud Properties over Sindh Using MODIS Satellite Data and a HYSPLIT Model
    Sharif, Fozia
    Alam, Khan
    Afsar, Sheeba
    [J]. AEROSOL AND AIR QUALITY RESEARCH, 2015, 15 (02) : 657 - 672
  • [3] Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images
    Hengl, Tomislav
    Heuvelink, Gerard B. M.
    Tadic, Melita Percec
    Pebesma, Edzer J.
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2012, 107 (1-2) : 265 - 277
  • [4] Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images
    Tomislav Hengl
    Gerard B. M. Heuvelink
    Melita Perčec Tadić
    Edzer J. Pebesma
    [J]. Theoretical and Applied Climatology, 2012, 107 : 265 - 277
  • [5] Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model
    Alam, Khan
    Qureshi, Salman
    Blaschke, Thomas
    [J]. ATMOSPHERIC ENVIRONMENT, 2011, 45 (27) : 4641 - 4651
  • [6] Spatio-temporal variations in aerosol optical and cloud parameters over Southern India retrieved from MODIS satellite data
    Balakrishnaiah, G.
    Kumar, K. Raghavendra
    Reddy, B. Suresh Kumar
    Gopal, K. Rama
    Reddy, R. R.
    Reddy, L. S. S.
    Swamulu, C.
    Ahammed, Y. Nazeer
    Narasimhulu, K.
    KrishnaMoorthy, K.
    Babu, S. Suresh
    [J]. ATMOSPHERIC ENVIRONMENT, 2012, 47 : 435 - 445
  • [7] Spatio-Temporal Urban Change Mapping With Time-Series SAR Data
    Che, Meiqin
    Vizziello, Anna
    Gamba, Paolo
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 7222 - 7234
  • [8] Workload Characterization of a Time-Series Prediction System for Spatio-Temporal Data
    Jain, Milan
    Ghosh, Sayan
    Nandanoori, Sai Pushpak
    [J]. PROCEEDINGS OF THE 19TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2022 (CF 2022), 2022, : 159 - 168
  • [9] Assessment of spatio-temporal vegetation dynamics in tropical arid ecosystem of India using MODIS time-series vegetation indices
    Gangalakunta P. Obi Reddy
    Nirmal Kumar
    Nisha Sahu
    Rajeev Srivastava
    Surendra Kumar Singh
    Lekkala Gopala Krishnama Naidu
    Gajjala Ravindra Chary
    Chandrashekhar M. Biradar
    Murali Krishna Gumma
    Bodireddy Sahadeva Reddy
    Javaji Narendra Kumar
    [J]. Arabian Journal of Geosciences, 2020, 13
  • [10] Assessment of spatio-temporal vegetation dynamics in tropical arid ecosystem of India using MODIS time-series vegetation indices
    Reddy, Gangalakunta P. Obi
    Kumar, Nirmal
    Sahu, Nisha
    Srivastava, Rajeev
    Singh, Surendra Kumar
    Naidu, Lekkala Gopala Krishnama
    Chary, Gajjala Ravindra
    Biradar, Chandrashekhar M.
    Gumma, Murali Krishna
    Reddy, Bodireddy Sahadeva
    Kumar, Javaji Narendra
    [J]. ARABIAN JOURNAL OF GEOSCIENCES, 2020, 13 (15)