Synthesis of colloidal PbSe nanoparticles using a microwave-assisted segmented flow reactor

被引:27
|
作者
Hostetler, Eric B. [1 ]
Kim, Ki-Joong [1 ]
Oleksak, Richard P. [1 ]
Fitzmorris, Robert C. [1 ]
Peterson, Daniel A. [2 ]
Chandran, Padmavathi [2 ]
Chang, Chih-Hung [1 ]
Paul, Brian K. [2 ]
Schut, David M. [3 ]
Herman, Gregory S. [1 ]
机构
[1] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA
[2] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA
[3] Univ Oregon, Voxtel Inc, Eugene, OR 97403 USA
关键词
PbSe; Nanoparticles; Colloidal processing; Microwave; Flow synthesis; EXTINCTION COEFFICIENT; LEAD SELENIDE; QUANTUM DOTS; NANOCRYSTALS;
D O I
10.1016/j.matlet.2014.04.089
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Colloidal lead selenide nanoparticles (PbSe NPs) were synthesized using a microwave-assisted continuous flow reactor. Rapid heating of precursors was performed in the microwave reaction zone to initiate nucleation and was followed by an oil bath growth zone. In this study we have evaluated the effect of the nucleation temperature on the PbSe NP size distributions, crystallographic structure, particle shape, and particle composition. The PbSe NP size could be varied from 11.2 to 13.9 nm by adjusting the microwave nucleation temperature between 124 and 159 degrees C. It was found that nucleation of Pb rich species occurred in the microwave reaction zone, while PbSe NPs form in the growth zone. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 59
页数:6
相关论文
共 50 条
  • [1] Microwave-assisted flow synthesis of multicore iron oxide nanoparticles
    Panariello, L.
    Besenhard, M. O.
    Damilos, S.
    Sergides, A.
    Sebastian, V.
    Irusta, S.
    Tang, J.
    Thanh, Nguyen Thi Kim
    Gavriilidis, A.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2022, 182
  • [2] Microwave-Assisted Synthesis of Colloidal Inorganic Nanocrystals
    Baghbanzadeh, Mostafa
    Carbone, Luigi
    Cozzoli, P. Davide
    Kappe, C. Oliver
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (48) : 11312 - 11359
  • [3] Continuous Microwave-Assisted Gas Liquid Segmented Flow Reactor for Controlled Nucleation and Growth of Nanocrystals
    Kim, Ki-Joong
    Oleksak, Richard P.
    Hostetler, Eric B.
    Peterson, Daniel A.
    Chandran, Padmavathi
    Schut, David M.
    Paul, Brian K.
    Herman, Gregory S.
    Chang, Chih-Hung
    CRYSTAL GROWTH & DESIGN, 2014, 14 (11) : 5349 - 5355
  • [4] Microwave-assisted synthesis of ceria nanoparticles
    Yang, HM
    Huang, CH
    Tang, AD
    Zhang, XC
    Yang, WG
    MATERIALS RESEARCH BULLETIN, 2005, 40 (10) : 1690 - 1695
  • [5] Microwave-assisted synthesis of nickel nanoparticles
    Xu, Wei
    Liew, Kong Yong
    Liu, Hanfan
    Huang, Tao
    Sun, Chuntao
    Zhao, Yanxi
    MATERIALS LETTERS, 2008, 62 (17-18) : 2571 - 2573
  • [6] Microwave-Assisted Synthesis of NiO Nanoparticles
    Jena, Anirudha
    Shivashankar, S. A.
    MESOSCOPIC, NANOSCOPIC, AND MACROSCOPIC MATERIALS, 2008, 1063 : 211 - 216
  • [7] Microwave-assisted synthesis of platinum nanoparticles
    Ling, XY
    Liu, ZL
    Lee, JY
    Science and Technology of Nanomaterials - ICMAT 2003, 2005, 23 : 199 - 202
  • [8] Microwave-assisted polyol synthesis of Cu nanoparticles
    Blosi, M.
    Albonetti, S.
    Dondi, M.
    Martelli, C.
    Baldi, G.
    JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (01) : 127 - 138
  • [9] Microwave-assisted polyol synthesis of Cu nanoparticles
    M. Blosi
    S. Albonetti
    M. Dondi
    C. Martelli
    G. Baldi
    Journal of Nanoparticle Research, 2011, 13 : 127 - 138
  • [10] Preparation of CdS nanoparticles by microwave-assisted synthesis
    Tamasauskaite-Tamasiunaite, L.
    Grinciene, G.
    Simkunaite-Stanyniene, B.
    Naruskevicius, L.
    Pakstas, V.
    Selskis, A.
    Norkus, E.
    CHEMIJA, 2015, 26 (03): : 193 - 197