Compressive sensing ghost imaging based on image gradient

被引:13
|
作者
Chen Yi [1 ,2 ]
Cheng Zhengdong [1 ]
Fan Xiang [1 ]
Cheng Yubao [1 ]
Liang Zhenyu [1 ]
机构
[1] Natl Univ Def Technol, State Key Lab Pulsed Power Laser Technol, Hefei 230037, Anhui, Peoples R China
[2] Sci & Technol Electroopt Informat Secur Control L, Tianjin 300450, Peoples R China
来源
OPTIK | 2019年 / 182卷
基金
美国国家科学基金会;
关键词
Ghost imaging; Compressive sensing; Image gradient; Total variation; Greedy algorithm; NOISE REMOVAL; RECOVERY;
D O I
10.1016/j.ijleo.2019.01.067
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In order to improve the imaging quality of ghost imaging and solve the problem of high distortion at a low sampling rate, the compressive sensing ghost imaging based on image gradient (IGGI) is proposed. The image gradient can reflect the changes of optical characteristics and carry the edge information of object. In this paper, the principle of compressive sensing ghost imaging is analyzed. And the total variation, the integral of image gradient, is used to optimize the reconstruction process. Simultaneously, the threshold of matching degree is set up to reduce computation load and improve imaging speed. The results of simulation and experiments show that compared with traditional ghost imaging, the IGGI can achieve high-quality images and obtain the edge information of targets at a low sampling rate, which further facilitate the practical application of ghost imaging.
引用
收藏
页码:1021 / 1029
页数:9
相关论文
共 50 条
  • [1] Compressive Sensing Ghost Imaging Based on Neighbor Similarity
    Chen Yi
    Fan Xiang
    Cheng Yubao
    Cheng Zhengdong
    Liang Zhenyu
    [J]. ACTA OPTICA SINICA, 2018, 38 (07)
  • [2] Compressive sensing computational ghost imaging
    Katkovnik, Vladimir
    Astola, Jaakko
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2012, 29 (08) : 1556 - 1567
  • [3] Diffraction effect in compressive sensing ghost imaging
    Chen Yi
    Fan Xiang
    Liang Zheng-yu
    Zhai Xiang
    [J]. 2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2017, : 1467 - 1470
  • [4] Correspondence normalized ghost imaging on compressive sensing
    赵生妹
    庄鹏
    [J]. Chinese Physics B, 2014, (05) : 291 - 295
  • [5] Correspondence normalized ghost imaging on compressive sensing
    Zhao Sheng-Mei
    Zhuang Peng
    [J]. CHINESE PHYSICS B, 2014, 23 (05)
  • [6] Compressed-Sensing-based Gradient Reconstruction for Ghost Imaging
    Rong Zhu
    Guangshun Li
    Ying Guo
    [J]. International Journal of Theoretical Physics, 2019, 58 : 1215 - 1226
  • [7] Compressed-Sensing-based Gradient Reconstruction for Ghost Imaging
    Zhu, Rong
    Li, Guangshun
    Guo, Ying
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (04) : 1215 - 1226
  • [8] Compressive Sensing based Image Watermarking using Gradient Descent Algorithm
    Cadjenovic, Ana
    Bakic, Jelena
    [J]. 2016 5TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2016, : 385 - 388
  • [9] Gradient-based compressive sensing for noise image and video reconstruction
    Zhao, Huihuang
    Wang, Yaonan
    Peng, Xiaojiang
    Qiao, Zhijun
    [J]. IET COMMUNICATIONS, 2015, 9 (07) : 940 - 946
  • [10] Multiple-Image Encryption Based on Compressive Ghost Imaging and Coordinate Sampling
    Li, Xianye
    Meng, Xiangfeng
    Yang, Xiulun
    Yin, Yongkai
    Wang, Yurong
    Peng, Xiang
    He, Wenqi
    Dong, Guoyan
    Chen, Hongyi
    [J]. IEEE PHOTONICS JOURNAL, 2016, 8 (04):