Positive solutions and multiple solutions for periodic problems driven by scalar p-Laplacian

被引:7
|
作者
Hu, Shouchuan
Papageorgiou, N. S.
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] SW Missouri State Univ, Dept Math, Springfield, MO 65804 USA
关键词
nonsmooth critical point theory; locally Lipschitz function; generalized subdifferential; nonsmooth PS-condition; Mountain Pass Theorem; positive solution; multiple solutions;
D O I
10.1002/mana.200310423
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a nonlinear second order periodic problem driven by a scalar p-Laplacian and with a nonsmooth, locally Lipschitz potential function. Using a variational approach based on the nonsmooth critical point theory for locally Lipschitz functions, we first prove the existence of nontrivial positive solutions and then establish the existence of a second distinct solution (multiplicity theorem) by strengthening further the hypotheses. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:1321 / 1334
页数:14
相关论文
共 50 条
  • [1] Positive Solutions for Nonlinear Periodic Problems with the Scalar p-Laplacian
    Denkowski, Zdzislaw
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. SET-VALUED ANALYSIS, 2008, 16 (5-6): : 539 - 561
  • [2] Positive Solutions for Nonlinear Periodic Problems with the Scalar p-Laplacian
    Zdzisław Denkowski
    Leszek Gasiński
    Nikolaos S. Papageorgiou
    [J]. Set-Valued Analysis, 2008, 16 : 539 - 561
  • [3] Pairs of positive solutions for the periodic scalar p-Laplacian
    Nikolaos S. Papageorgiou
    Francesca Papalini
    [J]. Journal of Fixed Point Theory and Applications, 2009, 5 : 157 - 184
  • [4] Pairs of positive solutions for the periodic scalar p-Laplacian
    Papageorgiou, Nikolaos S.
    Papalini, Francesca
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 5 (01) : 157 - 184
  • [5] On the Existence of Three Nontrivial Solutions for Periodic Problems Driven by the Scalar p-Laplacian
    Papageorgiou, Nikolaos S.
    Papalini, Francesca
    [J]. ADVANCED NONLINEAR STUDIES, 2011, 11 (02) : 455 - 471
  • [6] SOLUTIONS AND MULTIPLE SOLUTIONS FOR SUPERLINEAR PERTURBATIONS OF THE PERIODIC SCALAR p-LAPLACIAN
    Kyritsi, Sophia Th
    O'Regan, Donal
    Papageorgiou, Nikolaos S.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2013, 56 (03) : 805 - 827
  • [7] POSITIVE SOLUTIONS FOR THE PERIODIC SCALAR p-LAPLACIAN: EXISTENCE AND UNIQUENESS
    Kyritsi, Sophia Th.
    Papageorgiou, Nikolaos S.
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (04): : 1345 - 1361
  • [8] Solutions and multiple solutions for problems with the p-Laplacian
    Hu, Shouchuan
    Papageorgiou, Nikolaos S.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2007, 150 (04): : 309 - 326
  • [9] Solutions and multiple solutions for problems with the p-Laplacian
    Shouchuan Hu
    Nikolaos S. Papageorgiou
    [J]. Monatshefte für Mathematik, 2007, 150 : 309 - 326
  • [10] Multiple nontrivial solutions for nonlinear periodic problems with the p-Laplacian
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) : 504 - 535