cerebroViz: an R package for anatomical visualization of spatiotemporal brain data

被引:26
|
作者
Bahl, Ethan [1 ]
Koomar, Tanner [1 ]
Michaelson, Jacob J. [1 ]
机构
[1] Univ Iowa, Dept Psychiat, Carver Coll Med, Iowa City, IA 52242 USA
基金
美国国家卫生研究院;
关键词
DISORDERS; TRANSCRIPTOME;
D O I
10.1093/bioinformatics/btw726
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatiotemporal transcriptomic profiling has provided valuable insight into the patterning of gene expression throughout the human brain from early fetal development to adulthood. When combined with prior knowledge of a disease's age at onset and region-specificity, these expression profiles have provided the necessary context to both strengthen putative gene-disease associations and infer new associations. While a wealth of spatiotemporal expression data exists, there are currently no tools available to visualize this data within the anatomical context of the brain, thus limiting the intuitive interpretation of many such findings. We present cerebroViz, an R package to map spatiotemporal brain data to vector graphic diagrams of the human brain. Our tool allows rapid generation of publication-quality figures that highlight spatiotemporal trends in the input data, while striking a balance between usability and customization. cerebroViz is generalizable to any data quantifiable at a brain-regional resolution and currently supports visualization of up to thirty regions of the brain found in databases such as BrainSpan, GTEx and Roadmap Epigenomics. Availability and Implementation: cerebroViz is freely available through GitHub (https://github. com/ ethanbahl/cerebroViz). The tutorial is available at http://ethanbahl.github.io/cerebroViz/ Contacts: ethan-bahl@uiowa.edu or jacob-michaelson@uiowa.edu Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页码:762 / 763
页数:2
相关论文
共 50 条
  • [1] CEREBROVIZ: AN R PACKAGE FOR ANATOMICAL VISUALIZATION OF SPATIOTEMPORAL BRAIN DATA
    Bahl, Ethan
    Koomar, Tanner
    Michaelson, Jacob
    [J]. EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2017, 27 : S367 - S367
  • [2] barcodetrackR: An R Package for the Visualization of Cellular Barcoding Data
    Mortlock, Ryland
    Espinoza, Deigo
    Koelle, Samson
    Dunbar, Cynthia
    [J]. MOLECULAR THERAPY, 2020, 28 (04) : 355 - 355
  • [3] qPCRtools: An R package for qPCR data processing and visualization
    Li, Xiang
    Wang, Yingmin
    Li, Jingyu
    Mei, Xinyue
    Liu, Yixiang
    Huang, Huichuan
    [J]. FRONTIERS IN GENETICS, 2022, 13
  • [4] ceas: an R package for Seahorse data analysis and visualization
    House, Rachel J.
    Eapen, James P.
    Shen, Hui
    Graveel, Carrie R.
    Steensma, Matthew R.
    [J]. BIOINFORMATICS, 2024, 40 (08)
  • [5] smplot: An R Package for Easy and Elegant Data Visualization
    Min, Seung Hyun
    Zhou, Jiawei
    [J]. FRONTIERS IN GENETICS, 2021, 12
  • [6] DEvis: an R package for aggregation and visualization of differential expression data
    Price, Adam
    Caciula, Adrian
    Guo, Cheng
    Lee, Bohyun
    Morrison, Juliet
    Rasmussen, Angela
    Lipkin, W. Ian
    Jain, Komal
    [J]. BMC BIOINFORMATICS, 2019, 20 (1)
  • [7] rMSI: an R package for MS imaging data handling and visualization
    Rafols, Pere
    Torres, Sonia
    Ramirez, Noelia
    del Castillo, Esteban
    Yanes, Oscar
    Brezmes, Jesus
    Correig, Xavier
    [J]. BIOINFORMATICS, 2017, 33 (15) : 2427 - 2428
  • [8] DEvis: an R package for aggregation and visualization of differential expression data
    Adam Price
    Adrian Caciula
    Cheng Guo
    Bohyun Lee
    Juliet Morrison
    Angela Rasmussen
    W. Ian Lipkin
    Komal Jain
    [J]. BMC Bioinformatics, 20
  • [9] New Approaches in Visualization of Categorical Data: R Package extracat
    Pilhoefer, Alexander
    Unwin, Antony
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2013, 53 (07): : 1 - 25
  • [10] vlda: An R package for statistical visualization of multidimensional longitudinal data
    Lee, Bo-Hui
    Ryu, Seongwon
    Choi, Yong-Seok
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2021, 28 (04) : 369 - 391