Domain walls to Boussinesq-type equations in (2+1)-dimensions

被引:11
|
作者
Triki, H. [1 ]
Kara, A. H. [2 ]
Biswas, A. [3 ,4 ]
机构
[1] Badji Mokhtar Univ, Fac Sci, Dept Phys, Radiat Phys Lab, Annaba 23000, Algeria
[2] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
[3] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[4] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
关键词
Domain walls; Boussinesq type models; Conservation laws; NONLINEAR SCHRODINGER-EQUATION; SUB-ODE METHOD; CONSERVATION-LAWS; 1-SOLITON SOLUTION; SOLITON-SOLUTIONS; SPATIAL SOLITONS; MKDV EQUATION; SYSTEMS; WAVES; PROPAGATION;
D O I
10.1007/s12648-014-0466-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, two models with fourth-order dispersion in 2 + 1 dimensions are investigated. Based on Ansatz method, exact domain wall solutions are derived. Parametric conditions for the existence of the domain wall solutions are given. Lie symmetry analysis also retrieves conserved densities of governing nonlinear evolution equations.
引用
收藏
页码:751 / 755
页数:5
相关论文
共 50 条
  • [1] Domain walls to Boussinesq-type equations in (2 + 1)-dimensions
    H. Triki
    A. H. Kara
    A. Biswas
    [J]. Indian Journal of Physics, 2014, 88 : 751 - 755
  • [2] A Domain Decomposition Method for Linearized Boussinesq-Type Equations
    Caldas Steinstraesser, Joao Guilherme
    Kemlin, Gaspard
    Rousseau, Antoine
    [J]. JOURNAL OF MATHEMATICAL STUDY, 2019, 52 (03): : 320 - 340
  • [3] Skyrmions and domain walls in (2+1) dimensions
    Kudryavtsev, A
    Piette, BMAG
    Zakrzewski, WJ
    [J]. NONLINEARITY, 1998, 11 (04) : 783 - 795
  • [4] Bifurcations of travelling wave solutions for (2+1)-dimensional Boussinesq-type equation
    Feng, Dahe
    He, Tianlan
    Lu, Junliang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) : 402 - 414
  • [5] Invariant relations in Boussinesq-type equations
    Meletlidou, E
    Pouget, J
    Maugin, G
    Aifantis, E
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 22 (03) : 613 - 625
  • [6] Solitons modelled by Boussinesq-type equations
    Engelbrecht, Jun
    Peets, Tanel
    Tamm, Kert
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2018, 93 : 62 - 65
  • [7] ON SIMILARITY SOLUTIONS OF BOUSSINESQ-TYPE EQUATIONS
    ROSENAU, P
    SCHWARZMEIER, JL
    [J]. PHYSICS LETTERS A, 1986, 115 (03) : 75 - 77
  • [8] A new instability for Boussinesq-type equations
    Kirby, James T.
    [J]. JOURNAL OF FLUID MECHANICS, 2020, 894
  • [9] FURTHER ENHANCEMENTS OF BOUSSINESQ-TYPE EQUATIONS
    SCHAFFER, HA
    MADSEN, PA
    [J]. COASTAL ENGINEERING, 1995, 26 (1-2) : 1 - 14
  • [10] Exact Solutions to Lattice Boussinesq-Type Equations
    Wei Feng
    Song-Lin Zhao
    Da-Jun Zhang
    [J]. Journal of Nonlinear Mathematical Physics, 2012, 19 : 524 - 538