Second order tangent bundles of infinite dimensional manifolds

被引:20
|
作者
Dodson, CTJ [1 ]
Galanis, GN
机构
[1] UMIST, Dept Math, Manchester M60 1QD, Lancs, England
[2] Naval Acad Greece, Sect Math, Xatzikyriakion 18539, Piraeus, Greece
关键词
infinite-dimensional manifolds; Banach manifold; projective limit; Frechet manifold; second tangent bundle;
D O I
10.1016/j.geomphys.2004.02.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The second order tangent bundle (TM)-M-2 of a smooth manifold M consists of the equivalent classes of curves on M that agree up to their acceleration. It is known [Analele Stiintifice ale Universitatii Al. I. Cuza 28 (1982) 63] that in the case of a finite n-dimensional manifold M, (TM)-M-2 becomes a vector bundle over M if and only if M is endowed with a linear connection. Here we extend this result to M modeled on an arbitrarily chosen Banach space and more generally to those Frechet manifolds which can be obtained as projective limits of Banach manifolds. The result may have application in the study of infinite dimensional dynamical systems. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 136
页数:10
相关论文
共 50 条
  • [1] Geometry of the Second-Order Tangent Bundles of Riemannian Manifolds
    Gezer, Aydin
    Magden, Abdullah
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (04) : 985 - 998
  • [2] Geometry of the Second-Order Tangent Bundles of Riemannian Manifolds
    Aydin GEZER
    Abdullah MAGDEN
    [J]. Chinese Annals of Mathematics,Series B, 2017, (04) : 985 - 998
  • [3] Geometry of the second-order tangent bundles of Riemannian manifolds
    Aydin Gezer
    Abdullah Magden
    [J]. Chinese Annals of Mathematics, Series B, 2017, 38 : 985 - 998
  • [4] A Study on the Second Order Tangent Bundles over Bi-K■hlerian Manifolds
    Nour Elhouda DJAA
    Aydin GEZER
    Abderrahim ZAGANE
    [J]. Chinese Annals of Mathematics,Series B, 2024, (05) : 777 - 804
  • [5] CONNECTIONS AND SECOND ORDER DIFFERENTIAL EQUATIONS ON INFINITE DIMENSIONAL MANIFOLDS
    Suri, Ali
    Aghasi, Mansour
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2013, 6 (02): : 45 - 56
  • [6] ALMOST TANGENT MANIFOLDS OF SECOND-ORDER
    CLARK, RS
    GOEL, DS
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A194 - &
  • [7] Principal bundles on infinite dimensional manifolds with corners
    MargalefRoig, J
    OutereloDominguez, E
    PadronFernandez, E
    [J]. ACTA MATHEMATICA HUNGARICA, 1996, 72 (1-2) : 105 - 119
  • [8] On the parallelizability of tangent bundles for 2 and 3-dimensional manifolds
    Fodor, Dan Gregorian
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (04): : 387 - 401
  • [9] NEGATIVE TANGENT BUNDLES AND HYPERBOLIC MANIFOLDS
    WONG, B
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 61 (01) : 90 - 92
  • [10] Fano manifolds and stability of tangent bundles
    Kanemitsu, Akihiro
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 774 : 163 - 183