This paper deals with the nonlinear differential equation (phi((x)overdot))(center dot) + Sigma(i=1) f(2j-1) (x) (phi((x)overdot))(2j-1) + g(x) = 0, where the range of the function phi is bounded. A result concerning existence of limit cycles are presented. The proof of our result is based on phase plane analysis of the equivalent system with the Poincare-Bendixon theorem. Finally an example is given to illustrate our result.
机构:
Jinan Univ, Dept Math, Guangzhou 510632, Guangdong, Peoples R ChinaJinan Univ, Dept Math, Guangzhou 510632, Guangdong, Peoples R China
Huang, Jianfeng
Liang, Haihua
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Guangdong, Peoples R ChinaJinan Univ, Dept Math, Guangzhou 510632, Guangdong, Peoples R China
Liang, Haihua
Llibre, Jaume
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, SpainJinan Univ, Dept Math, Guangzhou 510632, Guangdong, Peoples R China
机构:
Jinan Univ, Dept Math, Guangzhou 510632, Guangdong, Peoples R ChinaJinan Univ, Dept Math, Guangzhou 510632, Guangdong, Peoples R China
Huang, Jianfeng
Liang, Haihua
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Guangdong, Peoples R ChinaJinan Univ, Dept Math, Guangzhou 510632, Guangdong, Peoples R China