Learning Accurate Business Process Simulation Models from Event Logs via Automated Process Discovery and Deep Learning

被引:13
|
作者
Camargo, Manuel [1 ,2 ,3 ]
Dumas, Marlon [1 ]
Gonzalez-Rojas, Oscar [2 ]
机构
[1] Univ Tartu, Tartu, Estonia
[2] Univ Los Andes, Bogota, Colombia
[3] Apromore, Tartu, Estonia
基金
欧洲研究理事会;
关键词
Process mining; Simulation; Deep learning;
D O I
10.1007/978-3-031-07472-1_4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Business process simulation is a well-known approach to estimate the impact of changes to a process with respect to time and cost measures - a practice known as what-if process analysis. The usefulness of such estimations hinges on the accuracy of the underlying simulation model. Data-Driven Simulation (DDS) methods leverage process mining techniques to learn process simulation models from event logs. Empirical studies have shown that, while DDS models adequately capture the observed sequences of activities and their frequencies, they fail to accurately capture the temporal dynamics of real-life processes. In contrast, generative Deep Learning (DL) models are better able to capture such temporal dynamics. The drawback of DL models is that users cannot alter them for what-if analysis due to their black-box nature. This paper presents a hybrid approach to learn process simulation models from event logs wherein a (stochastic) process model is extracted via DDS techniques, and then combined with a DL model to generate timestamped event sequences. An experimental evaluation shows that the resulting hybrid simulation models match the temporal accuracy of pure DL models, while partially retaining the what-if analysis capability of DDS approaches.
引用
收藏
页码:55 / 71
页数:17
相关论文
共 50 条
  • [1] Automated discovery of business process simulation models from event logs
    Camargo, Manuel
    Dumas, Marlon
    Gonzalez-Rojas, Oscar
    [J]. DECISION SUPPORT SYSTEMS, 2020, 134
  • [2] Split miner: automated discovery of accurate and simple business process models from event logs
    Adriano Augusto
    Raffaele Conforti
    Marlon Dumas
    Marcello La Rosa
    Artem Polyvyanyy
    [J]. Knowledge and Information Systems, 2019, 59 : 251 - 284
  • [3] Split miner: automated discovery of accurate and simple business process models from event logs
    Augusto, Adriano
    Conforti, Raffaele
    Dumas, Marlon
    La Rosa, Marcello
    Polyvyanyy, Artem
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 59 (02) : 251 - 284
  • [4] Automated Discovery of Process Models from Event Logs: Review and Benchmark
    Augusto, Adriano
    Conforti, Raffaele
    Dumas, Marlon
    La Rosa, Marcello
    Maggi, Fabrizio Maria
    Marrella, Andrea
    Mecella, Massimo
    Soo, Allar
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (04) : 686 - 705
  • [5] Learning business process simulation models: A Hybrid process mining and deep learning approach✩
    Camargo, Manuel
    Baron, Daniel
    Dumas, Marlon
    Gonzalez-Rojas, Oscar
    [J]. INFORMATION SYSTEMS, 2023, 117
  • [6] Stage-based discovery of business process models from event logs
    Hoang Nguyen
    Dumas, Marlon
    ter Hofstede, Arthur H. M.
    La Rosa, Marcello
    Maggi, Fabrizio Maria
    [J]. INFORMATION SYSTEMS, 2019, 84 : 214 - 237
  • [7] Discovery of Business Process Models from Incomplete Logs
    Wang, Lili
    Fang, Xianwen
    Shao, Chifeng
    [J]. ELECTRONICS, 2022, 11 (19)
  • [8] Split Miner: Discovering Accurate and Simple Business Process Models from Event Logs
    Augusto, Adriano
    Conforti, Raffaele
    Dumas, Marlon
    La Rosa, Marcello
    [J]. 2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 1 - 10
  • [9] Automated process discovery from event logs in BIM construction projects
    Pan, Yue
    Zhang, Limao
    [J]. AUTOMATION IN CONSTRUCTION, 2021, 127
  • [10] Belief network discovery from event logs for business process analysis
    Savickas, Titas
    Vasilecas, Olegas
    [J]. COMPUTERS IN INDUSTRY, 2018, 100 : 258 - 266