An Iterative Strategy for Precursor Ion Selection for LC-MS/MS Based Shotgun Proteomics

被引:13
|
作者
Zerck, Alexandra [1 ]
Nordhoff, Eckhard [1 ]
Resemann, Anja [2 ]
Mirgorodskaya, Ekaterina [1 ]
Suckau, Detlef [2 ]
Reinert, Knut [3 ]
Lehrach, Hans [1 ]
Gobom, Johan [1 ]
机构
[1] Max Planck Inst Mol Genet, Dept Vertebrate Genom, D-14195 Berlin, Germany
[2] Bruker Daltonik GmbH, D-28359 Bremen, Germany
[3] Free Univ Berlin, Dept Math & Comp Sci, D-14195 Berlin, Germany
关键词
Iterative precursor ion selection; Result-driven LC-MS/MS; IPS; COMPLEX PEPTIDE MIXTURES; MASS-SPECTROMETRY; PROTEIN IDENTIFICATION; SAMPLE PREPARATION; ACCURATE MASS; EXCLUSION;
D O I
10.1021/pr800835x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Currently, the precursor ion selection strategies in LC-MS mainly choose the most prominent peptide signals for MS/MS analysis. Consequently, high-abundance proteins are identified by MS/MS of many peptides, whereas proteins of lower abundance might elude identification. We present a novel, iterative and result-driven approach for precursor ion selection that significantly increases the efficiency of an MS/MS analysis by decreasing data redundancy and analysis time. By simulating different strategies for precursor ion selection on an existing data set, we compare our method to existing result-driven strategies and evaluate its performance with regard to mass accuracy, database size, and sample complexity.
引用
收藏
页码:3239 / 3251
页数:13
相关论文
共 50 条
  • [1] LC-MS/MS-based shotgun proteomics identified the targets of arthritis-related microRNA
    Kurata, Riho
    Yonezawa, Tomo
    Nakajima, Hideki
    Takada, Shyuji
    Asahara, Hiroshi
    [J]. ARTHRITIS RESEARCH & THERAPY, 2012, 14
  • [2] LC-MS/MS-based shotgun proteomics identified the targets of arthritis-related microRNA
    Riho Kurata
    Tomo Yonezawa
    Hideki Nakajima
    Shyuji Takada
    Hiroshi Asahara
    [J]. Arthritis Research & Therapy, 14 (Suppl 1):
  • [3] Controlling nonspecific trypsin cleavages in LC-MS/MS-based shotgun proteomics using optimized experimental conditions
    Fang, Pan
    Liu, Mingqi
    Xue, Yu
    Yao, Jun
    Zhang, Yang
    Shen, Huali
    Yang, Pengyuan
    [J]. ANALYST, 2015, 140 (22) : 7613 - 7621
  • [4] Optimal precursor ion selection for LC-MALDI MS/MS
    Zerck, Alexandra
    Nordhoff, Eckhard
    Lehrach, Hans
    Reinert, Knut
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [5] Optimal precursor ion selection for LC-MALDI MS/MS
    Alexandra Zerck
    Eckhard Nordhoff
    Hans Lehrach
    Knut Reinert
    [J]. BMC Bioinformatics, 14
  • [6] MSAcquisitionSimulator: data-dependent acquisition simulator for LC-MS shotgun proteomics
    Goldfarb, Dennis
    Wang, Wei
    Major, Michael B.
    [J]. BIOINFORMATICS, 2016, 32 (08) : 1269 - 1271
  • [7] Visualization of LC-MS/MS proteomics data in MaxQuant
    Tyanova, Stefka
    Temu, Tikira
    Carlson, Arthur
    Sinitcyn, Pavel
    Mann, Matthias
    Cox, Juergen
    [J]. PROTEOMICS, 2015, 15 (08) : 1453 - 1456
  • [8] LC-MS/Proteomics: a platform for the identification and selection of drug targets
    Lazar, Iulia M.
    [J]. CHIMICA OGGI-CHEMISTRY TODAY, 2014, 32 (02) : 18 - +
  • [9] LC-MS/MS shotgun proteomics reveals biochemical mechanisms of Paspalum fasciculatum tolerance to Pb-stress
    Salas-Moreno, M.
    Castillejo, M. A.
    Lopez-Hidalgo, C.
    Marrugo-Negrete, J.
    Rodriguez-Cavallo, E.
    Mendez-Cuadro, D.
    Jorrin-Novo, J.
    [J]. BIOLOGIA PLANTARUM, 2022, 66 : 188 - 200
  • [10] On the potential of micro-flow LC-MS/MS in proteomics
    Bian, Yangyang
    Gao, Chunli
    Kuster, Bernhard
    [J]. EXPERT REVIEW OF PROTEOMICS, 2022, 19 (03) : 153 - 164