MODEL AVERAGING BASED ON KULLBACK-LEIBLER DISTANCE

被引:57
|
作者
Zhang, Xinyu [1 ]
Zou, Guohua [1 ,2 ]
Carroll, Raymond J. [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China
[3] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
Akaike information; Kullback-Leibler distance; model averaging; model selection; prediction; GENERALIZED CROSS-VALIDATION; ASYMPTOTIC OPTIMALITY; INFORMATION CRITERIA; SELECTION; REGRESSION; CL;
D O I
10.5705/ss.2013.326
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a model averaging method based on Kullback-Leibler distance under a homoscedastic normal error term. The resulting model average estimator is proved to be asymptotically optimal. When combining least squares estimators, the model average estimator is shown to have the same large sample properties as the Mallows model average (MMA) estimator developed by Hansen (2007). We show via simulations that, in terms of mean squared prediction error and mean squared parameter estimation error, the proposed model average estimator is more efficient than the MMA estimator and the estimator based on model selection using the corrected Akaike information criterion in small sample situations. A modified version of the new model average estimator is further suggested for the case of heteroscedastic random errors. The method is applied to a data set from the Hong Kong real estate market.
引用
收藏
页码:1583 / 1598
页数:16
相关论文
共 50 条
  • [1] THE KULLBACK-LEIBLER DISTANCE
    KULLBACK, S
    [J]. AMERICAN STATISTICIAN, 1987, 41 (04): : 340 - 340
  • [2] Kullback-Leibler Averaging for Multitarget Density Fusion
    Da, Kai
    Li, Tiancheng
    Zhu, Yongfeng
    Fan, Hongqi
    Fu, Qiang
    [J]. DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 16TH INTERNATIONAL CONFERENCE, 2020, 1003 : 253 - 261
  • [3] The centroid of the symmetrical Kullback-Leibler distance
    Veldhuis, R
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (03) : 96 - 99
  • [4] Multiresolution image registration based on Kullback-Leibler distance
    Gan, R
    Wu, J
    Chung, ACS
    Yu, SCH
    Wells, WM
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2004, PT 1, PROCEEDINGS, 2004, 3216 : 599 - 606
  • [5] Model Averaging Estimation Method by Kullback-Leibler Divergence for Multiplicative Error Model
    Lu, Wanbo
    Shi, Wenhui
    [J]. COMPLEXITY, 2022, 2022
  • [6] Correcting the Kullback-Leibler distance for feature selection
    Coetzee, FM
    [J]. PATTERN RECOGNITION LETTERS, 2005, 26 (11) : 1675 - 1683
  • [7] SAR Image Segmentation Based on Kullback-Leibler Distance of Edgeworth
    Hu, Lei
    Ji, Yan
    Li, Yang
    Gao, Feng
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING-PCM 2010, PT I, 2010, 6297 : 549 - 557
  • [8] Kullback-Leibler Distance in Linear Parametric Modeling
    Beheshti, Soosan
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1671 - 1675
  • [9] Using Kullback-Leibler distance for text categorization
    Bigi, B
    [J]. ADVANCES IN INFORMATION RETRIEVAL, 2003, 2633 : 305 - 319
  • [10] Matrix CFAR detectors based on symmetrized Kullback-Leibler and total Kullback-Leibler divergences
    Hua, Xiaoqiang
    Cheng, Yongqiang
    Wang, Hongqiang
    Qin, Yuliang
    Li, Yubo
    Zhang, Wenpeng
    [J]. DIGITAL SIGNAL PROCESSING, 2017, 69 : 106 - 116