Real-time dense 3D object reconstruction using RGB-D sensor

被引:0
|
作者
Ruchay, Alexey [1 ,2 ,3 ]
Dorofeev, Konstantin [2 ]
Kalschikov, Vsevolod [2 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Biol Syst & Agrotechnol, Orenburg, Russia
[2] Chelyabinsk State Univ, Dept Math, Chelyabinsk, Russia
[3] South Ural State Univ, Natl Res Univ, Dept Informat Secur, Chelyabinsk, Russia
关键词
3D object reconstruction; RGB-D sensor; Iterative Closest Point;
D O I
10.1117/12.2567253
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a new algorithm for dense 3D object reconstruction using a RGB-D sensor at high rate. In order to obtain a dense shape recovery of a 3D object, an efficient merging of the current and incoming point clouds obtained with the Iterative Closest Point is suggested. As a result, incoming frames are aligned to the dense 3D model. The accuracy of the proposed 3D object reconstruction algorithm on real data is compared to that of the estate-of-the-art reconstruction algorithms.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] GEOMETRICAL 3D RECONSTRUCTION USING REAL-TIME RGB-D CAMERAS
    Penelle, B.
    Schenkel, A.
    Warzee, N.
    [J]. INTERNATIONAL CONFERENCE ON 3D IMAGING 2011 (IC3D 2011), 2011,
  • [2] Real-time tracking of 3D elastic objects with an RGB-D sensor
    Petit, Antoine
    Lippiello, Vincenzo
    Siciliano, Bruno
    [J]. 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3914 - 3921
  • [3] Albedo estimation for real-time 3D reconstruction using RGB-D and IR data
    Stotko, Patrick
    Weinmann, Michael
    Klein, Reinhard
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 150 : 213 - 225
  • [4] Real-time 3D Object Detection from Point Clouds using an RGB-D Camera
    Wang, Ya
    Xu, Shu
    Zell, Andreas
    [J]. ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 407 - 414
  • [5] Real-time reconstruction of pipes using RGB-D cameras
    Kim, Dong-Min
    Ahn, JeongHyeon
    Kim, Seung-wook
    Lee, Jongmin
    Kim, Myungho
    Han, JungHyun
    [J]. COMPUTER ANIMATION AND VIRTUAL WORLDS, 2024, 35 (01)
  • [6] Research and implementation of real-time people 3D reconstruction based on RGB-D data
    Zheng, Li-Guo
    Liu, Yang
    Luo, Jiang-Lin
    [J]. DESIGN, MANUFACTURING AND MECHATRONICS (ICDMM 2015), 2016, : 904 - 912
  • [7] Texture Mapping for 3D Reconstruction with RGB-D Sensor
    Fu, Yanping
    Yan, Qingan
    Yang, Long
    Liao, Jie
    Xiao, Chunxia
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4645 - 4653
  • [8] A Low-power and Real-time 3D Object Recognition Processor with Dense RGB-D Data Acquisition in Mobile Platforms
    Im, Dongseok
    Park, Gwangtae
    Ryu, Junha
    Li, Zhiyong
    Kang, Sanghoon
    Han, Donghyeon
    Lee, Jinsu
    Park, Wonhoon
    Kwon, Hankyul
    Yoo, Hoi-Jun
    [J]. IEEE SYMPOSIUM ON LOW-POWER AND HIGH-SPEED CHIPS AND SYSTEMS (2022 IEEE COOL CHIPS 25), 2022,
  • [9] RGB-D Fusion: Real-time Robust Tracking and Dense Mapping with RGB-D Data Fusion
    Lee, Seong-Oh
    Lim, Hwasup
    Kim, Hyoung-Gon
    Ahn, Sang Chul
    [J]. 2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 2749 - 2754
  • [10] Feature-based RGB-D camera pose optimization for real-time 3D reconstruction
    Wang C.
    Guo X.
    [J]. Guo, Xiaohu (xguo@utdallas.edu), 1600, Tsinghua University Press (03): : 95 - 106