Gradient-based optimization of a rotating algal biofilm process

被引:6
|
作者
Lamare, Pierre-Olivier [1 ,2 ]
Aguillon, Nina [2 ,3 ]
Sainte-Marie, Jacques [2 ,3 ]
Grenier, Jerome [4 ]
Bonnefond, Hubert [4 ,5 ]
Bernard, Olivier [1 ,4 ]
机构
[1] Univ Nice Cote Azur, INRIA, BIOCORE, BP93, F-06902 Sophia Antipolis, France
[2] INRIA, ANGE, 2 Rue Simone Iff,CS 42112, F-75589 Paris 12, France
[3] Sorbonne Univ, Lab Jacques Louis Lions, F-75005 Paris, France
[4] Sorbonne Univ, CNRS, INSU, Lab Oceanog Villefranche, 181 Chemin Lazaret, F-06230 Villefranche Sur Mer, France
[5] Inalve SAS, 61 Ave Simone Veil, F-06200 Nice, France
关键词
Adjoint-based optimization; PDE control; Microalgae; Biofilm; Biofuel; Rotating Algal Biofilm; PHOTOSYNTHESIS; PHOTOINHIBITION; NETWORK; MODEL;
D O I
10.1016/j.automatica.2019.02.043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Microalgae are microorganisms which have been only recently used for biotechnological applications, especially in the perspective of biofuel production. Here we focus on the shape optimization and optimal control of an innovative process where the microalgae are fixed on a support. They are thus successively exposed to light and dark conditions. The resulting growth can be represented by a dynamical system describing the denaturation of key proteins due to an excess of light. A Partial Differential Equations (PDE) model of the Rotating Algal Biofilm (RAB) is then proposed, representing local microalgal growth submitted to the time varying light. An adjoint-based gradient method is proposed to identify the optimal (constant) process folding and the (time varying) velocity of the biofilm. When applied to a realistic case, the optimization points out a particular configuration which significantly increases the productivity compared to a base case where the biofilm is fixed. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:80 / 88
页数:9
相关论文
共 50 条
  • [1] Gradient-based optimization of hyperparameters
    Bengio, Y
    NEURAL COMPUTATION, 2000, 12 (08) : 1889 - 1900
  • [2] Gradient-based simulation optimization
    Kim, Sujin
    PROCEEDINGS OF THE 2006 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2006, : 159 - 167
  • [3] Gradient-based learning and optimization
    Cao, XR
    PROCEEDINGS OF THE 17TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2003, : 3 - 7
  • [4] A skeletonization algorithm for gradient-based optimization
    Menten, Martin J.
    Paetzold, Johannes C.
    Zimmer, Veronika A.
    Shit, Suprosanna
    Ezhov, Ivan
    Holland, Robbie
    Probst, Monika
    Schnabel, Julia A.
    Rueckert, Daniel
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21337 - 21346
  • [5] A gradient-based direct aperture optimization
    Yang, Jie
    Zhang, Pengcheng
    Zhang, Liyuan
    Gui, Zhiguo
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2018, 35 (03): : 358 - 367
  • [6] Gradient-based optimization of spintronic devices
    Imai, Y.
    Liu, S.
    Akashi, N.
    Nakajima, K.
    APPLIED PHYSICS LETTERS, 2025, 126 (08)
  • [7] Catalyst for Gradient-based Nonconvex Optimization
    Paquette, Courtney
    Lin, Hongzhou
    Drusvyatskiy, Dmitriy
    Mairal, Julien
    Harchaoui, Zaid
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [8] Trivializations for Gradient-Based Optimization on Manifolds
    Lezcano-Casado, Mario
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] ON THE ADAPTIVITY OF STOCHASTIC GRADIENT-BASED OPTIMIZATION
    Lei, Lihua
    Jordan, Michael I.
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (02) : 1473 - 1500
  • [10] A Gradient-Based Optimization Algorithm for LASSO
    Kim, Jinseog
    Kim, Yuwon
    Kim, Yongdai
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (04) : 994 - 1009