Multi-source Multi-level Attention Networks for Visual Question Answering

被引:16
|
作者
Yu, Dongfei [1 ]
Fu, Jianlong [2 ]
Tian, Xinmei [3 ]
Mei, Tao [4 ]
机构
[1] Univ Sci & Technol China, Bldg 8,West Campus, Hefei, Anhui, Peoples R China
[2] Microsoft Res Asia, Microsoft Bldg 2,Danling St, Beijing, Peoples R China
[3] Univ Sci & Technol China, Room 1203,Tech Bldg, Hefei, Anhui, Peoples R China
[4] North Star Century Ctr, JD AI Res 8F,Bldg A,8 Beichen West St, Beijing 100105, Peoples R China
基金
国家重点研发计划;
关键词
Visual question answering; attention model; multi-modal representations; visual relationship;
D O I
10.1145/3316767
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, Visual Question Answering (VQA) has attracted increasing attention due to its requirement on cross-modal understanding and reasoning of vision and language. VQA is proposed to automatically answer natural language questions with reference to a given image. VQA is challenging, because the reasoning process on a visual domain needs a full understanding of the spatial relationship, semantic concepts, as well as the common sense for a real image. However, most existing approaches jointly embed the abstract low-level visual features and high-level question features to infer answers. These works have limited reasoning ability due to the lack of modeling of the rich spatial context of regions, high-level semantics of images, and knowledge across multiple sources. To solve the challenges, we propose multi-source multi-level attention networks for visual question answering that can benefit both spatial inferences by visual attention on context-aware region representation and reasoning by semantic attention on concepts as well as external knowledge. Indeed, we learn to reason on image representation by question-guided attention at different levels across multiple sources, including region and concept level representation from image source as well as sentence level representation from the external knowledge base. First, we encode region-based middle-level outputs from Convolutional Neural Networks (CNNs) into spatially embedded representation by a multi-directional two-dimensional recurrent neural network and, further, locate the answer-related regions by Multiple Layer Perceptron as visual attention. Second, we generate semantic concepts from high-level semantics in CNNs and select those question-related concepts as concept attention. Third, we query semantic knowledge from the general knowledge base by concepts and selected question-related knowledge as knowledge attention. Finally, we jointly optimize visual attention, concept attention, knowledge attention, and question embedding by a softmax classifier to infer the final answer. Extensive experiments show the proposed approach achieved significant improvement on two very challenging VQA datasets.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Multi-level Attention Networks for Visual Question Answering
    Yu, Dongfei
    Fu, Jianlong
    Mei, Tao
    Rui, Yong
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4187 - 4195
  • [2] A Multi-level Mesh Mutual Attention Model for Visual Question Answering
    Zhi Lei
    Guixian Zhang
    Lijuan Wu
    Kui Zhang
    Rongjiao Liang
    [J]. Data Science and Engineering, 2022, 7 : 339 - 353
  • [3] A Multi-level Mesh Mutual Attention Model for Visual Question Answering
    Lei, Zhi
    Zhang, Guixian
    Wu, Lijuan
    Zhang, Kui
    Liang, Rongjiao
    [J]. DATA SCIENCE AND ENGINEERING, 2022, 7 (04) : 339 - 353
  • [4] Multi-level, multi-modal interactions for visual question answering over text in images
    Jincai Chen
    Sheng Zhang
    Jiangfeng Zeng
    Fuhao Zou
    Yuan-Fang Li
    Tao Liu
    Ping Lu
    [J]. World Wide Web, 2022, 25 : 1607 - 1623
  • [5] Multi-level, multi-modal interactions for visual question answering over text in images
    Chen, Jincai
    Zhang, Sheng
    Zeng, Jiangfeng
    Zou, Fuhao
    Li, Yuan-Fang
    Liu, Tao
    Lu, Ping
    [J]. World Wide Web, 2022, 25 (04) : 1607 - 1623
  • [6] Multi-level, multi-modal interactions for visual question answering over text in images
    Chen, Jincai
    Zhang, Sheng
    Zeng, Jiangfeng
    Zou, Fuhao
    Li, Yuan-Fang
    Liu, Tao
    Lu, Ping
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (04): : 1607 - 1623
  • [7] Multi-modal spatial relational attention networks for visual question answering
    Yao, Haibo
    Wang, Lipeng
    Cai, Chengtao
    Sun, Yuxin
    Zhang, Zhi
    Luo, Yongkang
    [J]. IMAGE AND VISION COMPUTING, 2023, 140
  • [8] Multi-Modal Explicit Sparse Attention Networks for Visual Question Answering
    Guo, Zihan
    Han, Dezhi
    [J]. SENSORS, 2020, 20 (23) : 1 - 15
  • [9] length Context-aware Multi-level Question Embedding Fusion for visual question answering
    Li, Shengdong
    Gong, Chen
    Zhu, Yuqing
    Luo, Chuanwen
    Hong, Yi
    Lv, Xueqiang
    [J]. INFORMATION FUSION, 2024, 102
  • [10] Multi-level Contrastive Learning for Commonsense Question Answering
    Fang, Quntian
    Huang, Zhen
    Zhang, Ziwen
    Hu, Minghao
    Hu, Biao
    Wang, Ankun
    Li, Dongsheng
    [J]. KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT IV, KSEM 2023, 2023, 14120 : 318 - 331