Apis mellifera pre-miRNA prediction using decision tree based classifier

被引:0
|
作者
Mishra, A. K. [1 ]
Lobiyal, D. K. [1 ]
机构
[1] Jawaharlal Nehru Univ, SC & SS, New Delhi 110067, India
关键词
miRNA; Secondary structure; entropy; pre-miRNA; Information gain; decision tree; MICRORNA; IDENTIFICATION; ATTRIBUTES; GENOMICS; ELEGANS;
D O I
10.1109/ICCAE.2009.56
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we have used decision tree based classification approach to predict pre-miRNA from Apis mellifera (Honey bee). A set of 108 pre-miRNA from Apis mellifera with equal number of known pre-miRNA and non pre-miRNA is used for training the classifier. These 108 instances have 14 attributes that are derived from secondary structure data. The secondary structures are generated from pre-miRNA sequences from Apis meillfera database using the package RNAfold. We have applied information gain method for dimension reduction and attribute relevance analysis. This method reduces the dimension of the data set from 14 to 4 relevant attributes. The data set of resultant attributes is used for training the model for pre-miRNA prediction. Further the model is applied to two test data sets of 153 and 16 instances respectively for verification of prediction accuracy of the model. The precision and recall results from test data sets are encouraging and may facilitate miRNA biogenesis.
引用
收藏
页码:123 / 126
页数:4
相关论文
共 50 条
  • [1] Exploring dominating features from Apis Mellifera pre-miRNA
    Mishra, A. K.
    Lobiyal, D. K.
    [J]. 2008 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER THEORY AND ENGINEERING, 2008, : 363 - 367
  • [2] AB INITIO HUMAN miRNA AND PRE-miRNA PREDICTION
    Titov, Igor I.
    Vorozheykin, Pavel S.
    [J]. JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2013, 11 (06)
  • [3] Computational prediction of the localization of microRNAs within their pre-miRNA
    Leclercq, Mickael
    Diallo, Abdoulaye Banire
    Blanchette, Mathieu
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (15) : 7200 - 7211
  • [4] Prediction of pre-miRNA with multiple stem-loops using pruning algorithm
    Song, Xiaofeng
    Wang, Minghao
    Chen, Yi-Ping Phoebe
    Wang, Huating
    Han, Ping
    Sun, Hao
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2013, 43 (05) : 409 - 416
  • [5] A Rapid Assay for miRNA Maturation by Using Unmodified pre-miRNA
    Neubacher, Saskia
    Dojahn, Claudine M.
    Arenz, Christoph
    [J]. CHEMBIOCHEM, 2011, 12 (15) : 2302 - 2305
  • [6] Operon Prediction by Decision Tree Classifier Based on VPRSM
    Wang, Shuqin
    Wang, Shuqin
    Sun, Fangxun
    Wu, Yingsi
    Du, Wei
    Zhou, Chunguang
    Liang, Yanchun
    [J]. 2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 566 - +
  • [7] High Class-Imbalance in pre-miRNA Prediction: A Novel Approach Based on deepSOM
    Stegmayer, Georgina
    Yones, Cristian
    Kamenetzky, Laura
    Milone, Diego H.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (06) : 1316 - 1326
  • [8] PlantMirP-Rice: An Efficient Program for Rice Pre-miRNA Prediction
    Zhang, Huiyu
    Wang, Hua
    Yao, Yuangen
    Yi, Ming
    [J]. GENES, 2020, 11 (06) : 1 - 11
  • [9] Traffic Prediction Using Decision Tree Classifier in Hive Metastore
    Suvitha, D.
    Vijayalakshmi, M.
    [J]. PROCEEDING OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS, BIG DATA AND IOT (ICCBI-2018), 2020, 31 : 571 - 578
  • [10] Decision Tree Classifier using Theme based Partitioning
    Kadappa, Vijayakumar
    Guggari, Shankru
    Negi, Atul
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMPUTING AND NETWORK COMMUNICATIONS (COCONET), 2015, : 540 - 546