HARDY-HILBERT'S INEQUALITY WITH GENERAL HOMOGENEOUS KERNEL

被引:0
|
作者
Peric, Ivan [1 ]
Vukovic, Predrag [2 ]
机构
[1] Univ Zagreb, Fac Food Technol & Biotechnol, Zagreb 10000, Croatia
[2] Univ Zagreb, Fac Teacher Educ, Cakovec 40000, Croatia
来源
关键词
Hardy-Hilbert's inequality; homogeneous kernel; the best possible constant; conjugate exponents; non-conjugate exponents; the hypergeometric function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A general form of recently obtained Hardy-Hilbert's inequality with perturbed Hilbert's kernel with the best possible estimation in the case of conjugate exponents is obtained. The multidimensional case is also considered. The case of non-conjugate exponents is briefly given.
引用
收藏
页码:525 / 536
页数:12
相关论文
共 50 条
  • [1] A MORE ACCURATE MULTIDIMENSIONAL HARDY-HILBERT TYPE INEQUALITY WITH A GENERAL HOMOGENEOUS KERNEL
    Yang, Bicheng
    Chen, Qiang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (01): : 113 - 128
  • [2] A NEW GENERALIZATION OF HARDY-HILBERT'S INEQUALITY WITH NON-HOMOGENEOUS KERNEL
    Chang, Chi-Tung
    Lan, Jin-Wen
    Wang, Kuo-Zhong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (01): : 1 - 11
  • [3] Homogeneous polynomials and extensions of Hardy-Hilbert's inequality
    Anagnostopoulos, Vasileios A.
    Sarantopoulos, Yannis
    Tonge, Andrew M.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) : 47 - 55
  • [4] On a Hardy-Hilbert-type inequality with a general homogeneous kernel
    Rassias, Michael Th
    Yang, Bicheng
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2016, 7 (01): : 249 - 269
  • [5] On an Extension of Hardy-Hilbert's Inequality
    Yang, Bicheng
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (03): : 425 - 431
  • [6] On a Reverse Hardy-Hilbert's Inequality
    Yang, Bicheng
    KYUNGPOOK MATHEMATICAL JOURNAL, 2007, 47 (03): : 411 - 423
  • [7] On Hardy-Hilbert's integral inequality
    Yang, BC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 261 (01) : 295 - 306
  • [8] On the extended Hardy-Hilbert's inequality
    Yang, BC
    Debnath, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) : 187 - 199
  • [9] On a new inequality similar to Hardy-Hilbert's inequality
    Yang, BC
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (01): : 37 - 44
  • [10] ON A DECOMPOSITION OF HARDY-HILBERT'S TYPE INEQUALITY
    Lashkaripour, R.
    Moazzen, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (01) : 101 - 112