Renal tubular cells elicit adaptive responses following exposure to nephrotoxins, such as cadmium. One response is the up-regulation of the 32-kDa redox-sensitive protein, heme oxygenase-1. Exposure of renal proximal tubular epithelial cells to 10 mu M cadmium demonstrated induction (similar to 20-fold) of heme oxygenase-1 mRNA and protein. Using a 4.5-kb human heme oxygenase-1 promoter construct, the importance of a previously identified cadmium response element (TGCTAGAT) in HeLa cells was verified in renal epithelial cells. Specific protein-DNA interaction with this sequence was demonstrated using nuclear extracts from cadmium-treated cells. Yeast one-hybrid screen of a human kidney cDNA library resulted in the identification of pescadillo, a unique nucleolar, developmental protein, as an interacting protein with the cadmium response element and was confirmed by chromatin immunoprecipitation in vivo and gel shift assays with purified glutathione S-transferase-pescadillo protein in vitro. The specificity of the DNA- protein interaction was verified by the absence of a binding complex when the core sequence of the cadmium response element was mutated or deleted. In addition, B23/nucleophosmin, another nucleolar protein, did not interact with the cadmium response sequence. Overexpression of pescadillo resulted in increased activity of the 4.5-kb human heme oxygenase-1 promoter construct but failed to activate this construct when the cadmium response sequence was mutated. The findings demonstrate the important and previously unrecognized role of pescadillo as a DNA-binding protein interacting specifically with the cadmium response element of the human heme oxygenase-1 gene.