Semi-strong and strong solutions for variable density asymmetric fluids in unbounded domains

被引:11
|
作者
Silva, Pablo Braz E. [1 ]
Cruz, FelipeW. [1 ]
Rojas-Medar, Marko A. [2 ]
机构
[1] Univ Fed Pernambuco, Dept Matemat, BR-50740560 Recife, PE, Brazil
[2] Univ Tarapac, Inst Alta Investigac, Casilla 7D, Arica, Chile
关键词
asymmetric fluids; semi-Galerkin approximations; semi-strong solutions; strong solutions; regularity theory; NAVIER-STOKES EQUATIONS; BOUNDARY-VALUE PROBLEM; GLOBAL WEAK SOLUTIONS; INCOMPRESSIBLE FLUIDS; VANISHING VISCOSITY; EXISTENCE; REGULARITY; APPROXIMATION; R-3;
D O I
10.1002/mma.4006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of local in time semi-strong solutions and global in time strong solutions for the system of equations describing flows of viscous and incompressible asymmetric fluids with variable density in general threedimensional domains with boundary uniformly of class C-3. Under suitable assumptions, uniqueness of local semi-strong solutions is also proved. Copyright (C) 2016 JohnWiley & Sons, Ltd.
引用
收藏
页码:757 / 774
页数:18
相关论文
共 50 条
  • [1] Global strong solutions for variable density incompressible asymmetric fluids in thin domains
    e Silva, Pablo Braze
    Cruz, Felipe W.
    Rojas-Medar, Marko A.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
  • [2] WEAK AND SEMI-STRONG SOLUTIONS OF TRICOMI PROBLEM
    SCHNEIDER, M
    [J]. MATHEMATISCHE NACHRICHTEN, 1974, 60 (1-6) : 167 - 180
  • [3] SEMI-STRONG CONTINUITY
    Roberson, Pamela D.
    Scheers, Jennifer M.
    [J]. TEXAS JOURNAL OF SCIENCE, 2012, 64 (1-4): : 89 - 100
  • [4] On The Strong and the Semi-Strong Path Partition Conjecture
    Sridharan, Sriraman
    Vilamajo, Patrick
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (01): : 289 - 296
  • [5] Semi-strong efficiency of Bitcoin
    Vidal-Tomas, David
    Ibanez, Ana
    [J]. FINANCE RESEARCH LETTERS, 2018, 27 : 259 - 265
  • [6] On The Strong and the Semi-Strong Path Partition Conjecture
    Sriraman Sridharan
    Patrick Vilamajó
    [J]. Indian Journal of Pure and Applied Mathematics, 2020, 51 : 289 - 296
  • [7] Characterization of efficient solutions for multi-objective optimization problems involving semi-strong and generalized semi-strong E-convexity
    Youness, E. A.
    Emam, Tarek
    [J]. ACTA MATHEMATICA SCIENTIA, 2008, 28 (01) : 7 - 16
  • [8] Estimation and Inference With Weak, Semi-Strong, and Strong Identification
    Andrews, Donald W. K.
    Cheng, Xu
    [J]. ECONOMETRICA, 2012, 80 (05) : 2153 - 2211
  • [9] CHARACTERIZATION OF EFFICIENT SOLUTIONS FOR MULTI-OBJECTIVE OPTIMIZATION PROBLEMS INVOLVING SEMI-STRONG AND GENERALIZED SEMI-STRONG E-CONVEXITY
    E.A.Youness
    Tarek Emam
    [J]. Acta Mathematica Scientia, 2008, (01) : 7 - 16
  • [10] Semi-Strong Factors in Asset Returns*
    Connor, Gregory
    Korajczyk, Robert A.
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2024, 22 (01) : 70 - 93