Non-inductive current drive and transport in high βN plasmas in JET

被引:14
|
作者
Voitsekhovitch, I. [1 ]
Alper, B. [1 ]
Brix, M. [1 ]
Budny, R. V. [2 ]
Buratti, P. [3 ]
Challis, C. D. [1 ]
Ferron, J. [4 ]
Giroud, C. [1 ]
Joffrin, E. [5 ]
Laborde, L. [1 ]
Luce, T. C. [4 ]
McCune, D. [2 ]
Menard, J. [2 ]
Murakami, M. [6 ]
Park, J. M. [6 ]
机构
[1] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[3] ENEA Fus, EURATOM Assoc, Frascati, Italy
[4] Gen Atom Co, San Diego, CA 92186 USA
[5] IRFM, DSM, CEA, EURATOM Assoc, F-13108 St Paul Les Durance, France
[6] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
英国工程与自然科学研究理事会;
关键词
STATE ADVANCED TOKAMAK; BOOTSTRAP CURRENT; DIII-D; ARBITRARY COLLISIONALITY; BARRIER OSCILLATIONS; ADVANCED SCENARIOS; ITER; OPERATION; PROGRESS; PROFILE;
D O I
10.1088/0029-5515/49/5/055026
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A route to stationary MHD stable operation at high beta(N) has been explored at the Joint European Torus (JET) by optimizing the current ramp-up, heating start time and the waveform of neutral beam injection (NBI) power. In these scenarios the current ramp-up has been accompanied by plasma pre-heat (or the NBI has been started before the current flat-top) and NBI power up to 22 MW has been applied during the current flat-top. In the discharges considered transient total beta(N) approximate to 3.3 and stationary (during high power phase) beta(N) approximate to 3 have been achieved by applying the feedback control of beta(N) with the NBI power in configurations with monotonic or flat core safety factor profile and without an internal transport barrier (ITB). The transport and current drive in this scenario is analysed here by using the TRANSP and ASTRA codes. The interpretative analysis performed with TRANSP shows that 50-70% of current is driven non-inductively; half of this current is due to the bootstrap current which has a broad profile since an ITB was deliberately avoided. The GLF23 transport model predicts the temperature profiles within a +/- 22% discrepancy with the measurements over the explored parameter space. Predictive simulations with this model show that the E x B rotational shear plays an important role for thermal ion transport in this scenario, producing up to a 40% increase of the ion temperature. By applying transport and current drive models validated in self-consistent simulations of given reference scenarios in a wider parameter space, the requirements for fully non-inductive stationary operation at JET are estimated. It is shown that the strong stiffness of the temperature profiles predicted by the GLF23 model restricts the bootstrap current at larger heating power. In this situation full non-inductive operation without an ITB can be rather expensive strongly relying on the external non-inductive current drive sources.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] NON-INDUCTIVE CURRENT DRIVE
    Westerhof, Egbert
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2012, 61 (2T) : 312 - 319
  • [2] The effect of non-inductive current drive on tokamak transport
    Helander, P
    Akers, RJ
    Valovic, M
    Peysson, Y
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 : B151 - B163
  • [3] NON-INDUCTIVE CURRENT DRIVE
    Westerhof, Egbert
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2010, 57 (2T) : 222 - 229
  • [4] Towards fully non-inductive current drive operation in JET
    Litaudon, X
    Crisanti, F
    Alper, B
    Artaud, JF
    Baranov, YF
    Barbato, E
    Basiuk, V
    Bécoulet, A
    Bécoulet, M
    Castaldo, C
    Challis, CH
    Conway, GD
    Dux, R
    Eriksson, LG
    Esposito, B
    Fourment, C
    Frigione, D
    Garbet, X
    Giroud, C
    Hawkes, NC
    Hennequin, P
    Huysmans, GTA
    Imbeaux, F
    Joffrin, E
    Lomas, PJ
    Lotte, P
    Maget, P
    Mantsinen, M
    Mailloux, J
    Mazon, D
    Milani, F
    Moreau, D
    Parail, V
    Pohn, E
    Rimini, FG
    Sarazin, Y
    Tresset, G
    Zastrow, KD
    Zerbini, M
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (07) : 1057 - 1086
  • [5] A REVIEW OF NON-INDUCTIVE CURRENT DRIVE THEORY
    CORDEY, JG
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 1984, 26 (01) : 123 - 132
  • [6] Advanced regimes in ITER with non-inductive current drive
    Karulin, N
    Boucher, D
    Putvinski, S
    [J]. 17TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, VOLS 1 AND 2, 1998, : 729 - 732
  • [7] Calculation of the non-inductive current profile in high-performance NSTX plasmas
    Gerhardt, S. P.
    Fredrickson, E.
    Gates, D.
    Kaye, S.
    Menard, J.
    Bell, M. G.
    Bell, R. E.
    Le Blanc, B. P.
    Kugel, H.
    Sabbagh, S. A.
    Yuh, H.
    [J]. NUCLEAR FUSION, 2011, 51 (03)
  • [8] Numerical calculations of non-inductive current driven by microwaves in JET
    Kirov, K. K.
    Baranov, Yu
    Mailloux, J.
    Nave, M. F. F.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    Ayres, C.
    Bachmann, C.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (12)
  • [9] Scaling law of non-inductive current drive steady state tokamak
    Miyamoto, Kenro
    [J]. Plasma and Fusion Research, 2012, 7 (2012):
  • [10] NON-INDUCTIVE CURRENT PROBE
    BAK, CK
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1977, 48 (09): : 1227 - 1227