Transformation formulas for generalized Dedekind eta functions

被引:30
|
作者
Yang, YF [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan
关键词
D O I
10.1112/S0024609304003510
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Transformation formulas are obtained for generalized Dedekind eta functions; these are simpler to apply than Schoeneberg's formulas. As an application, a list is given of the generators of all the function fields associated with torsion-free genus zero congruence subgroups of PSL2(R).
引用
收藏
页码:671 / 682
页数:12
相关论文
共 50 条
  • [1] GENERALIZED DEDEKIND ETA-FUNCTIONS AND GENERALIZED DEDEKIND SUMS
    BERNDT, BC
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 178 (APR) : 495 - 508
  • [2] Applications of Hecke Operator to Generalized Dedekind Eta Functions
    Acikgoz, Mehmet
    Cangul, Ismail Naci
    Kim, Daeyeoul
    Simsek, Yilmaz
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 568 - +
  • [3] Hecke Operators Related to the Generalized Dedekind Eta Functions and Applications
    Aygunes, A. Ahmet
    Simsek, Yilmaz
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1098 - 1101
  • [4] The Generalized Eta Transformation Formulas as the Hecke Modular Relation
    Wang, Nianliang
    Kuzumaki, Takako
    Kanemitsu, Shigeru
    AXIOMS, 2024, 13 (05)
  • [5] Asymptotic formulas and generalized Dedekind sums
    Almkvist, G
    EXPERIMENTAL MATHEMATICS, 1998, 7 (04) : 343 - 359
  • [6] ADDITION FORMULAS FOR JACOBI THETA FUNCTIONS, DEDEKIND'S ETA FUNCTION, AND RAMANUJAN'S CONGRUENCES
    Liu, Zhi-Guo
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 240 (01) : 135 - 150
  • [7] AN ELEMENTARY PROOF OF THE TRANSFORMATION FORMULA FOR THE DEDEKIND ETA FUNCTION
    Kong, Ze-Yong
    Teo, Lee-Peng
    arXiv, 2023,
  • [8] Certain modular functions similar to the Dedekind eta function
    Horie, T
    Kanou, N
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2002, 72 (1): : 89 - 117
  • [9] Certain Modular Functions Similar to the Dedekind eta Function
    Taro Horie
    Naruo Kanou
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2002, 72 : 89 - 117
  • [10] Periodic analogues of Dedekind sums and transformation formulas of Eisenstein series
    M. Cihat Dağlı
    Mümün Can
    The Ramanujan Journal, 2017, 44 : 301 - 341