Index of Equivariant Callias-Type Operators and Invariant Metrics of Positive Scalar Curvature

被引:4
|
作者
Guo, Hao [1 ,2 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Positive scalar curvature; Equivariant index; Callias operator;
D O I
10.1007/s12220-019-00249-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate, for any Lie group G acting isometrically on a manifold M, the general notion of a G-equivariant elliptic operator that is invertible outside of a G-cocompact subset of M. We prove a version of the Rellich lemma for this setting and use this to define the equivariant index of such operators. We show that G-equivariant Callias-type operators are self-adjoint, regular, and hence equivariantly invertible at infinity. Such operators explicitly arise from a pairing of the Dirac operator with the equivariant Higson corona. We apply the theory developed herein to obtain an obstruction to positive scalar curvature metrics on non-cocompact manifolds.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条