Inverse Problems with Errors in the Independent Variables Errors-in-Variables, Total Least Squares, and Bayesian Inference

被引:0
|
作者
Emery, A. F. [1 ]
机构
[1] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
Most practioners of inverse problems use least squares or maximum likelihood (MLE) to estimate parameters with the assumption that the errors are normally distributed. When there are errors both in the measured responses and in the independent variables, or in the model itself, more information is needed and these approaches may not lead to the best estimates. A review of the error-in-variables (EIV) models shows that other approaches are necessary and in some cases Bayesian inference is to be preferred.
引用
收藏
页码:881 / 892
页数:12
相关论文
共 50 条
  • [1] Total least squares and errors-in-variables modeling
    Van Huffel, Sabine
    Markovsky, Ivan
    Vaccaro, Richard J.
    Soderstrom, Torsten
    [J]. SIGNAL PROCESSING, 2007, 87 (10) : 2281 - 2282
  • [2] Total least squares and errors-in-variables modeling
    Van Huffel, Sabine
    Cheng, Chi-Lun
    Mastronardi, Nicola
    Paige, Chris
    Kukush, Alexander
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (02) : 1076 - 1079
  • [3] Bayesian inference for the Errors-In-Variables model
    Fang, Xing
    Li, Bofeng
    Alkhatib, Hamza
    Zeng, Wenxian
    Yao, Yibin
    [J]. STUDIA GEOPHYSICA ET GEODAETICA, 2017, 61 (01) : 35 - 52
  • [4] Bayesian inference for the Errors-In-Variables model
    Xing Fang
    Bofeng Li
    Hamza Alkhatib
    Wenxian Zeng
    Yibin Yao
    [J]. Studia Geophysica et Geodaetica, 2017, 61 : 35 - 52
  • [5] Introduction to total least squares techniques and errors-in-variables modeling
    VanHuffel, S
    [J]. RECENT ADVANCES IN TOTAL LEAST SQUARES TECHNIQUES AND ERRORS-IN-VARIABLES MODELING, 1997, : R13 - R22
  • [6] Consistent estimation for an errors-in-variables model based on constrained total least squares problems
    Aishima, Kensuke
    [J]. JSIAM LETTERS, 2022, 14 : 111 - 114
  • [7] Consistency of the total least squares estimator in the linear errors-in-variables regression
    Shklyar, Sergiy
    [J]. MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2018, 5 (03): : 247 - 295
  • [8] Total robustified least squares estimation in partial errors-in-variables model
    Zhao J.
    Gui Q.
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2016, 45 (05): : 552 - 559
  • [9] Effects of errors-in-variables on weighted least squares estimation
    Peiliang Xu
    Jingnan Liu
    Wenxian Zeng
    Yunzhong Shen
    [J]. Journal of Geodesy, 2014, 88 : 705 - 716
  • [10] Effects of errors-in-variables on weighted least squares estimation
    Xu, Peiliang
    Liu, Jingnan
    Zeng, Wenxian
    Shen, Yunzhong
    [J]. JOURNAL OF GEODESY, 2014, 88 (07) : 705 - 716