Backstepping Design for Incremental Stability of Stochastic Hamiltonian Systems

被引:0
|
作者
Jagtap, Pushpak [1 ]
Zamani, Majid [1 ]
机构
[1] Tech Univ Munich, Dept Elect & Comp Engn, D-80290 Munich, Germany
关键词
BISIMILAR SYMBOLIC MODELS; STABILIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Incremental stability is a property that ensures the uniform asymptotic stability of each trajectory rather than a fixed equilibrium point or trajectory. This makes it a stronger stability notion for dynamical systems. Here, we introduce a notion of incremental stability for stochastic control systems and provide its description in terms of a notion of incremental Lyapunov functions. Moreover, we provide a backstepping controller design scheme providing controllers along with corresponding incremental Lyapunov functions rendering a class of stochastic control systems, namely stochastic Hamiltonian systems, incrementally stable. Moreover, to illustrate the effectiveness of the design approach, we design a controller making a controlled spring pendulum system in a stochastic environment incrementally stable.
引用
收藏
页码:5367 / 5372
页数:6
相关论文
共 50 条
  • [1] Backstepping Design for Incremental Stability of Stochastic Hamiltonian Systems with Jumps
    Jagtap, Pushpak
    Zamani, Majid
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (01) : 255 - 261
  • [2] Backstepping Control Design for Stochastic Hamiltonian Systems
    Wu Zhaojing
    Cui Mingyue
    [J]. 2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 5930 - 5935
  • [3] Backstepping Design for Incremental Stability
    Zamani, Majid
    Tabuada, Paulo
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (09) : 2184 - 2189
  • [4] Towards backstepping design for incremental stability
    Zamani, Majid
    Tabuada, Paulo
    [J]. 49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2426 - 2431
  • [5] BACKSTEPPING CONTROL IN VECTOR FORM FOR STOCHASTIC HAMILTONIAN SYSTEMS
    Wu, Zhaojing
    Cui, Mingyue
    Shi, Peng
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (02) : 925 - 942
  • [6] Incremental stability analysis of stochastic hybrid systems
    Zhang, Ben-gong
    Chen, Luonan
    Aihara, Kazuyuki
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (02) : 1225 - 1234
  • [7] Adaptive Backstepping Controller Design for Stochastic Jump Systems
    Xia, Yuanqing
    Fu, Mengyin
    Shi, Peng
    Wu, Zhaojing
    Zhang, Jinhui
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (12) : 2853 - 2859
  • [8] Observer Design for Stochastic Nonlinear Systems via Contraction-Based Incremental Stability
    Dani, Ashwin P.
    Chung, Soon-Jo
    Hutchinson, Seth
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (03) : 700 - 714
  • [9] Stochastic stability and bifurcation of quasi-Hamiltonian systems
    Zhu, WQ
    Huang, ZL
    [J]. IUTAM SYMPOSIUM ON NONLINEARITY AND STOCHASTIC STRUCTURAL DYNAMICS, 2001, 85 : 307 - 318
  • [10] Backstepping control design for stochastic systems driven by Levy processes
    Do, K. D.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (01) : 68 - 80