On weighted logarithmic-Sobolev & logarithmic-Hardy inequalities

被引:2
|
作者
Das, Ujjal [1 ]
机构
[1] HBNI, Inst Math Sci, Chennai 600113, Tamil Nadu, India
关键词
Logarithmic Hardy inequality; Logarithmic Sobolev inequality; Hardy-Sobolev inequality; Lorentz-Sobolev inequality; Assouad dimension; EQUATION;
D O I
10.1016/j.jmaa.2020.124796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For N >= 3 and p is an element of(1, N), we look for g is an element of L-loc(1)(R-N) such that the following weighted logarithmic Sobolev inequality: integral g vertical bar u vertical bar(p) log vertical bar(p) dx <= gamma log ( C(g,gamma integral(RN) vertical bar del u vertical bar(p) dx), holds true for all u is an element of D-0(1,p)( R-N) with integral(RN) g vertical bar u vertical bar(p) dx = 1, for some gamma, C( g,gamma) > 0. For each r is an element of(p, Np/N-p], we identify a Banach function space H-p,H-r(R-N) such that the above inequality holds for g is an element of H-p,H-r(R-N). For gamma > r/r-p, we also find a class of gfor which the best constant C( g,gamma) in the above inequality is attained in D-0(1,p) (R-N). Further, for a closed set Ewith Assouad dimension = d < N and a is an element of (-(N-d)(p-1)/p, (N-p)(N-d)/Np), we establish the following logarithmic Hardy inequality integral(RN) vertical bar u vertical bar(p)/delta(p(a+1))(E) log (delta(N-P-Pa vertical bar)(E)u vertical bar(p)) dx <= N/P log (c integral(RN) vertical bar del u vertical bar(p)/delta(pa)(E) dx), for all u is an element of C-c(infinity)(R-N) with integral(RN)vertical bar u vertical bar(p)/delta(p(a+1))(E) dx - 1, for some C > 0, where delta(E)(x) in the distance between x and E. The second order extension of the logarithmic Hardy inequality is also obtained. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Wright-Fisher-type equations for opinion formation, large time behavior and weighted logarithmic-Sobolev inequalities
    Furioli, Giulia
    Pulvirenti, Ada
    Terraneo, Elide
    Toscani, Giuseppe
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (07): : 2065 - 2082
  • [2] LOGARITHMIC SOBOLEV INEQUALITIES
    GROSS, L
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A484 - A484
  • [3] LOGARITHMIC SOBOLEV INEQUALITIES
    GROSS, L
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (06): : A609 - A609
  • [4] LOGARITHMIC SOBOLEV INEQUALITIES
    GROSS, L
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) : 1061 - 1083
  • [5] Weighted Moser–Onofri–Beckner and Logarithmic Sobolev Inequalities
    Nguyen Lam
    Guozhen Lu
    [J]. The Journal of Geometric Analysis, 2018, 28 : 1687 - 1715
  • [6] Logarithmic-Sobolev and multilinear Holder's inequalities via heat flow monotonicity formulas
    Abolarinwa, A.
    Oladejo, N. K.
    Salawu, S. O.
    Onate, C. A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 364
  • [7] Weighted Moser-Onofri-Beckner and Logarithmic Sobolev Inequalities
    Nguyen Lam
    Lu, Guozhen
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) : 1687 - 1715
  • [8] Weighted Logarithmic Sobolev Inequalities for Sub-Gaussian Measures
    Qian, Bin
    Zhang, Zhengliang
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2011, 116 (02) : 173 - 177
  • [9] Weighted Logarithmic Sobolev Inequalities for Sub-Gaussian Measures
    Bin Qian
    Zhengliang Zhang
    [J]. Acta Applicandae Mathematicae, 2011, 116
  • [10] LOGARITHMIC SOBOLEV TRACE INEQUALITIES
    Feo, Filomena
    Posteraro, Maria Rosaria
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (03) : 569 - 582