Seedlings of a differential barley (Hordeum vulgare L.) series (21 genotypes) and of six check genotypes were used in the greenhouse to assess variation in virulence among 20 single-spore isolates of the net blotch pathogen, Pyrenophora teres Drechs. f. teres Smedeg., collected from various sites in Finland. The experiment was run twice and symptom expression was recorded on the first three leaves. Analysis of second leaf symptom scores from Run 1 indicated differences in virulence between isolates, all of which were pathogenic, and differential resistance among the barleys. The virulence of P. teres isolates appeared to be conditioned by the host barley from which the isolate derived; the average virulence of isolates collected from a susceptible host was greater than that of isolates collected from a less susceptible hot. Results from Run 2 were similar regarding resistance within the barleys, but variation in virulence among the P. teres isolates was not consistent with that from Run 1. CI 9819 carries duplicate genes for resistance to P. teres (Rpt1b and Rpt1c), and CI 7548 possesses Rpt3d. Both genotypes were highly resistant to all isolates. The Rpt1a gene of Tifang (CI 4407) conferred resistance to all isolates in Run 2, but only to about half of the isolates in Run 1. The checks, including two of the symptomatically most resistant Nordic barley genotypes, were universally susceptible during these stringent tests. No selective pressure has been placed on Finnish isolates of P. teres through previous deployment of major resistance genes, and it is speculated that any variation in virulence among isolates is likely to be due to a combination of evolutionary forces including, natural selection, random genetic drift and gene flow.