Improved Fault Diagnosis in Online Process Monitoring of Complex Networked Processes: a Data-Driven Approach

被引:0
|
作者
Rato, Tiago J. [1 ]
Reis, Marco S. [1 ]
机构
[1] Univ Coimbra, Dept Chem Engn, CIEPQPF, Rua Silvio Lima, P-3030790 Coimbra, Portugal
关键词
Principal component analysis; Variables transformation; Fault detection; Fault diagnosis; Causal structure;
D O I
10.1016/B9780-444-63965-3.50282-8
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Many of the fault detection and diagnosis frameworks currently used in complex industrial processes rely on the application of data-driven models. Among these methodologies, those based on principal component analysis (PCA) are particularly relevant due to its effectiveness in describing the normal operation conditions (NOC) in a parsimonious way, with resort to a reduced set of latent variables. However. PCA models are non-causal by nature and therefore fail to extract the intrinsic structure of the relationships between the variables, leading to limited fault diagnosis capabilities. To circumvent this limitation, we propose to implement a data-driven pre-processing module that codifies the causal structure of data and that can be easily plugged-in into current monitoring schemes. This pre-processing module makes use of a Sensitivity Enhancing Transformation (SET) that decorrelates the variables based on their causal structure, inferred through partial correlations. Therefore, deviations on the new decor-related variables represent specific changes in the process structure, making fault diagnosis more transparent. To demonstrate the applicability of the proposed approach, two case studies are considered (CSTR and the Tennessee Eastman process). The results show that mapping the causal structure by means of the SET leads to a set of variables directly linked with the true source of the fault, providing a simple and effective way to improve fault detection and diagnosis.
引用
下载
收藏
页码:1681 / 1686
页数:6
相关论文
共 50 条
  • [1] Joint Data-Driven Fault Diagnosis Causality Graph With Statistical Process Monitoring for Complex Industrial Processes
    Dong, Jie
    Wang, Mengyuan
    Zhang, Xiong
    Ma, Liang
    Peng, Kaixiang
    IEEE ACCESS, 2017, 5 : 25217 - 25225
  • [2] Data-Driven Process Monitoring and Fault Diagnosis: A Comprehensive Survey
    Melo, Afranio
    Camara, Mauricio Melo
    Pinto, Jose Carlos
    PROCESSES, 2024, 12 (02)
  • [3] A data-driven multiplicative fault diagnosis approach for automation processes
    Hao, Haiyang
    Zhang, Kai
    Ding, Steven X.
    Chen, Zhiwen
    Lei, Yaguo
    ISA TRANSACTIONS, 2014, 53 (05) : 1436 - 1445
  • [4] Progress of data-driven and knowledge-driven process monitoring and fault diagnosis for industry process
    Liu, Qiang
    Chai, Tian-You
    Qin, S-Joe
    Zhao, Li-Jie
    Kongzhi yu Juece/Control and Decision, 2010, 25 (06): : 801 - 807
  • [5] A Data-Driven Clustering Approach for Fault Diagnosis
    Hou, Jian
    Xiao, Bing
    IEEE ACCESS, 2017, 5 : 26512 - 26520
  • [6] A Data-Driven Process Monitoring Approach for Dynamic Processes with Deterministic Disturbance
    Luo, Hao
    Huo, Mingyi
    Li, Kuan
    Yin, Shen
    2018 IEEE 27TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2018, : 939 - 944
  • [8] A data-driven approach to monitoring data collection in an online panel
    Herzing, Jessica M. E.
    Vandenplas, Caroline
    Axenfeld, Julian B.
    LONGITUDINAL AND LIFE COURSE STUDIES, 2019, 10 (04): : 433 - 452
  • [9] Survey on data-driven industrial process monitoring and diagnosis
    Qin, S. Joe
    ANNUAL REVIEWS IN CONTROL, 2012, 36 (02) : 220 - 234
  • [10] An LWPR-Based Data-Driven Fault Detection Approach for Nonlinear Process Monitoring
    Wang, Guang
    Yin, Shen
    Kaynak, Okyay
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (04) : 2016 - 2023