The continuum phase diagram of the 2d non-commutative λI• 4 model

被引:15
|
作者
Mejia-Diaz, Hector [1 ]
Bietenholz, Wolfgang [1 ]
Panero, Marco [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[2] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain
来源
关键词
Matrix Models; Spontaneous Symmetry Breaking; Non-Commutative Geometry; Nonperturbative Effects; QUANTUM-FIELD THEORY; SCALAR FIELD;
D O I
10.1007/JHEP10(2014)056
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a non-perturbative study of the lambda I center dot (4) model on a non-commutative plane. The lattice regularised form can be mapped onto a Hermitian matrix model, which enables Monte Carlo simulations. Numerical data reveal the phase diagram; at large lambda it contains a "striped phase", which is absent in the commutative case. We explore the question whether or not this phenomenon persists in a Double Scaling Limit (DSL), which extrapolates simultaneously to the continuum and to infinite volume, at a fixed non-commutativity parameter. To this end, we introduce a dimensional lattice spacing based on the decay of the correlation function. Our results provide evidence for the existence of a striped phase even in the DSL, which implies the spontaneous breaking of translation symmetry. Due to the non-locality of this model, this does not contradict the Mermin-Wagner theorem.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] The continuum phase diagram of the 2d non-commutative λϕ4 model
    Héctor Mejía-Díaz
    Wolfgang Bietenholz
    Marco Panero
    Journal of High Energy Physics, 2014
  • [2] Phase diagram and dispersion relation of the non-commutative λφ4 model in d=3 -: art. no. 042
    Bietenholz, W
    Hofheinz, F
    Nishimura, J
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (06):
  • [3] The non-commutative λφ4 model
    Bietenholz, W
    Hofheinz, F
    Nishimura, J
    ACTA PHYSICA POLONICA B, 2003, 34 (10): : 4711 - 4726
  • [4] The non-commutative λφ4 model
    Bietenholz, W.
    Hofheinz, F.
    Nishimura, J.
    Acta Physica Polonica, Series B., 2003, 34 (10): : 4711 - 4726
  • [5] Embedding of a 2D Graphene System in Non-Commutative Space
    Taie, M.
    Monemzadeh, M.
    Khoshnevisan, B.
    JOURNAL OF NANOSTRUCTURES, 2013, 3 (03) : 315 - 322
  • [6] A NON-COMMUTATIVE DIAGRAM IN THE THEORY OF MATERIALS
    SILHAVY, M
    ARCHIVES OF MECHANICS, 1984, 36 (03): : 433 - 435
  • [7] Numerical results on the non-commutative λφ4 model
    Bietenholz, W
    Hofheinz, F
    Nishimura, J
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 129 : 865 - 867
  • [8] Numerical results for U (1) gauge theory on 2d and 4d non-commutative spaces
    Bietenholz, W
    Bigarini, A
    Hofheinz, F
    Nishimura, J
    Susaki, Y
    Volkhoz, J
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2005, 53 (5-6): : 418 - 425
  • [9] Probability distribution of the index in gauge theory on 2d non-commutative geometry
    Aoki, Hajime
    Nishimura, Jun
    Susaki, Yoshiaki
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (10):
  • [10] The index of the overlap Dirac operator on a discretized 2d non-commutative torus
    Aoki, Hajime
    Nishimurabc, Jun
    Susakibd, Yoshiaki
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02):