Constant Angle Surfaces in Lorentzian Berger Spheres

被引:6
|
作者
Onnis, Irene I. [1 ]
Passamani, Apoena Passos [2 ]
Piu, Paola [3 ]
机构
[1] Univ Sao Paulo, Dept Matemat, ICMC, CP 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Espirito Santo, Dept Matemat, BR-29075910 Vitoria, ES, Brazil
[3] Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
基金
巴西圣保罗研究基金会;
关键词
Helix surfaces; Constant angle surfaces; Lorentzian Berger sphere; HELIX SURFACES;
D O I
10.1007/s12220-018-0044-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study helix spacelike and timelike surfaces in the Lorentzian Berger sphere S-epsilon(3), that is the three-dimensional sphere endowed with a 1-parameter family of Lorentzian metrics, obtained by deforming the round metric on S-3 along the fibers of the Hopf fibration S-3 -> S-2(1/2) by -epsilon(2). Our main result provides a characterization of the helix surfaces in S-epsilon(3) using the symmetries of the ambient space and a general helix in S-epsilon(3), with axis the infinitesimal generator of the Hopf fibers. Also, we construct some explicit examples of helix surfaces in S-epsilon(3).
引用
收藏
页码:1456 / 1478
页数:23
相关论文
共 50 条