A Study of the Number of Roots of xk = g in a Finite Group via Its Frobenius-Schur Indicators

被引:0
|
作者
Prajapati, S. K. [1 ]
Sarma, R. [1 ]
机构
[1] Indian Inst Technol, Dept Math, New Delhi 110016, India
关键词
Frobenius-Schur indicators; p-groups; group characters; P-GROUPS;
D O I
10.1142/S1005386717000062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group. For k epsilon N, x epsilon Irr(G), define e(x)((k))) := 1/broken vertical bar C vertical bar Sigma(g epsilon G)x(g(k)). This is called the k-th Frobenius-Schur indicator of x. In this article we study the Frobenius-Schur indicators for Frobenius groups, p-groups, semidihedral groups and modular p-groups. Further, we use this to study the function (sigma(k)(G)(g) which counts the number of roots of x(k) = g in a finite group G.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 6 条