On dynamic shortest paths problems

被引:0
|
作者
Roditty, L [1 ]
Zwick, U [1 ]
机构
[1] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We obtain the following results related to dynamic versions of the shortest-paths problem: (i) Reductions that show that the incremental and decremental single-source shortest-paths problems, for weighted directed or undirected graphs, are, in a strong sense, at least as hard as the static all-pairs shortest-paths problem. We also obtain slightly weaker results for the corresponding unweighted problems. (ii) A randomized fully-dynamic algorithm for the all-pairs shortestpaths problem in directed unweighted graphs with an amortized update time of (O) over tilde (mrootn) and a worst case query time is O(n(3/4)). (iii) A deterministic O(n(2) log n) time algorithm for constructing a (log n)-spanner with O(n) edges for any weighted undirected graph on n vertices. The algorithm uses a simple algorithm for incrementally maintaining single-source shortest-paths tree up to a given distance.
引用
收藏
页码:580 / 591
页数:12
相关论文
共 50 条
  • [1] On Dynamic Shortest Paths Problems
    Roditty, Liam
    Zwick, Uri
    [J]. ALGORITHMICA, 2011, 61 (02) : 389 - 401
  • [2] On Dynamic Shortest Paths Problems
    Liam Roditty
    Uri Zwick
    [J]. Algorithmica, 2011, 61 : 389 - 401
  • [3] On Bounded Leg Shortest Paths Problems
    Liam Roditty
    Michael Segal
    [J]. Algorithmica, 2011, 59 : 583 - 600
  • [4] On bounded leg shortest paths problems
    Roditty, Liam
    Segal, Michael
    [J]. PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 775 - +
  • [5] On Bounded Leg Shortest Paths Problems
    Roditty, Liam
    Segal, Michael
    [J]. ALGORITHMICA, 2011, 59 (04) : 583 - 600
  • [6] Improved algorithms for dynamic shortest paths
    Djidjev, HN
    Pantziou, GE
    Zaroliagis, CD
    [J]. ALGORITHMICA, 2000, 28 (04) : 367 - 389
  • [7] Improved Algorithms for Dynamic Shortest Paths
    H. N. Djidjev
    G. E. Pantziou
    C. D. Zaroliagis
    [J]. Algorithmica, 2000, 28 : 367 - 389
  • [8] Shortest paths between shortest paths
    Kaminski, Marcin
    Medvedev, Paul
    Milanic, Martin
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (39) : 5205 - 5210
  • [9] A note on shortest path problems with forbidden paths
    Smith, Olivia J.
    Savelsbergh, Martin W. P.
    [J]. NETWORKS, 2014, 63 (03) : 239 - 242
  • [10] LYUSTERNIK,LA - SHORTEST PATHS - VARIATIONAL PROBLEMS
    GILLESPI.RP
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 : 163 - +