Relative perturbation theory for hyperbolic eigenvalue problem

被引:11
|
作者
Slapnicar, I [1 ]
Truhar, N
机构
[1] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica BB, Split 21000, Croatia
[2] Univ Josip Juraj Strossmayer, Fac Civil Engn, Osijek 31000, Croatia
关键词
hyperbolic eigenvalue problems; perturbation theory;
D O I
10.1016/S0024-3795(99)00126-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give relative perturbation bounds for eigenvalues and perturbation bounds for eigenspaces of a hyperbolic eigenvalue problem Hx = lambda Jx, where H is a positive definite matrix and J is a diagonal matrix of signs. We consider two types of perturbations: when a graded matrix H=D*AD is perturbed in a graded sense to H+delta H= D*(A+delta A)D, and the multiplicative perturbations of the form H+delta H= (I + E)*H(I + E). Our bounds are simple to compute, compare well to the classical results, and can be used when analyzing numerical algorithms. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 50 条