Evolutionary computation based identification of a monotonic Takagi-Sugeno-Kang fuzzy system

被引:0
|
作者
Won, JM [1 ]
Seo, K [1 ]
Hwang, SK [1 ]
Lee, JS [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Elect Engn, Nam Gu, Pohang 790784, South Korea
关键词
monotonic function; fuzzy system identification; Takagi-Sugeno-Kang fuzzy system; evolutionary computation; constraint optimization;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces an evolutionary computation (EC)-based identification method of a Takagi-Sugeno-Kang (TSK) fuzzy system constrained by monotonic input-output relationship. The differentiation of a TSK fuzzy system output with respect to its input yields a sufficient condition of the fuzzy system parameters that makes the fuzzy system monotonic. By using the derived condition, we suggest a new EC-based fuzzy system identification method whose fuzzy model preserves monotonicity at every identification stage by means of modified representation and mutation paradigms. Simulation results show that the proposed identification technique is better than conventional methods in its convergence rate, generalization characteristic, and robustness.
引用
收藏
页码:1140 / 1143
页数:4
相关论文
共 50 条
  • [1] Parameter conditions for monotonic Takagi-Sugeno-Kang fuzzy system
    Won, JM
    Park, SY
    Lee, JS
    FUZZY SETS AND SYSTEMS, 2002, 132 (02) : 135 - 146
  • [2] Monotonic relation-constrained Takagi-Sugeno-Kang fuzzy system
    Deng, Zhaohong
    Cao, Ya
    Lou, Qiongdan
    Choi, Kup-Sze
    Wang, Shitong
    INFORMATION SCIENCES, 2022, 582 : 243 - 257
  • [3] Multilabel Takagi-Sugeno-Kang Fuzzy System
    Lou, Qiongdan
    Deng, Zhaohong
    Xiao, Zhiyong
    Choi, Kup-Sze
    Wang, Shitong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (09) : 3410 - 3425
  • [4] Takagi-Sugeno-Kang Type Collaborative Fuzzy Rule Based System
    Chou, K. P.
    Prasad, M.
    Lin, Y. Y.
    Joshi, S.
    Lin, C. T.
    Chang, J. Y.
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2014, : 315 - 320
  • [5] Bayesian Takagi-Sugeno-Kang Fuzzy Classifier
    Gu, Xiaoqing
    Chung, Fu-Lai
    Wang, Shitong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (06) : 1655 - 1671
  • [6] Robust identification of Takagi-Sugeno-Kang fuzzy models using regularization
    Johansen, TA
    FUZZ-IEEE '96 - PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 1996, : 180 - 186
  • [7] Data-driven fuzzy modeling for Takagi-Sugeno-Kang fuzzy system
    Rezaee, Babak
    Zarandi, M. H. Fazel
    INFORMATION SCIENCES, 2010, 180 (02) : 241 - 255
  • [8] Design of adaptive Takagi-Sugeno-Kang fuzzy models
    Kukolj, Dragan
    Applied Soft Computing Journal, 2002, 2 (02): : 89 - 103
  • [9] Kernel Functions in Takagi-Sugeno-Kang Fuzzy System with Nonsingleton Fuzzy Input
    Guevara, Jorge
    Hirata, Roberto, Jr.
    Canu, Stephane
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [10] Online identification of evolving Takagi-Sugeno-Kang fuzzy models for crane systems
    Precup, Radu-Emil
    Filip, Horatiu-Ioan
    Radac, Mircea-Bogdan
    Petriu, Emil M.
    Preitl, Stefan
    Dragos, Claudia-Adina
    APPLIED SOFT COMPUTING, 2014, 24 : 1155 - 1163