Fusible numbers and Peano Arithmetic

被引:1
|
作者
Erickson, Jeff [1 ]
Nivasch, Gabriel [2 ]
Xu, Junyan [3 ]
机构
[1] Univ Illinois, Chicago, IL 60680 USA
[2] Ariel Univ, Ariel, Israel
[3] NCI, Canc Data Sci Lab, CCR, NIH, Bethesda, MD USA
关键词
D O I
10.1109/LICS52264.2021.9470703
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Inspired by a mathematical riddle involving fuses, we define the fusible numbers as follows: 0 is fusible, and whenever x; y are fusible with |y - x| < 1, the number (x + y + 1)/2 is also fusible. We prove that the set of fusible numbers, ordered by the usual order on R, is well-ordered, with order type epsilon(0). Furthermore, we prove that the density of the fusible numbers along the real line grows at an incredibly fast rate: Letting g(n) be the largest gap between consecutive fusible numbers in the interval [n,infinity), we have g(n)(-1) >= F epsilon(0) (n for some constant c, where F alpha denotes the fast-growing hierarchy. Finally, we derive some true statements that can be formulated but not proven in Peano Arithmetic, of a different flavor than previously known such statements: PA cannot prove the true statement "For every natural number n there exists a smallest fusible number larger than n." Also, consider the algorithm " M(x): if x < 0 return, else return M(x - M(x - 1))/2." Then M terminates on real inputs, although PA cannot prove the statement " M terminates on all natural inputs."
引用
收藏
页数:13
相关论文
共 50 条
  • [1] FUSIBLE NUMBERS AND PEANO ARITHMETIC
    Erickson, Jeff
    Nivasch, Gabriel
    Xu, Junyan
    LOGICAL METHODS IN COMPUTER SCIENCE, 2022, 18 (03) : 6:1 - 6:26
  • [2] Cyclic Arithmetic Is Equivalent to Peano Arithmetic
    Simpson, Alex
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES (FOSSACS 2017), 2017, 10203 : 283 - 300
  • [3] Remarks on Peano arithmetic
    Sayward, C
    RUSSELL-THE JOURNAL OF THE BERTRAND RUSSELL ARCHIVES, 2000, 20 (01): : 27 - 32
  • [4] NOTES ON PEANO ARITHMETIC
    FRIEDRICHSDORF, U
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1976, 22 (05): : 431 - 436
  • [5] SUBTHEORIES OF PEANO ARITHMETIC
    CLOTE, P
    JOURNAL OF SYMBOLIC LOGIC, 1987, 52 (01) : 297 - 297
  • [6] Peano and the Foundations of Arithmetic
    Lolli, Gabriele
    GIUSEPPE PEANO BETWEEN MATHEMATICS AND LOGIC, 2011, : 47 - 66
  • [7] ILLUSORY MODELS OF PEANO ARITHMETIC
    Kikuchi, Makoto
    Kurahashi, Taishi
    JOURNAL OF SYMBOLIC LOGIC, 2016, 81 (03) : 1163 - 1175
  • [8] Interpretability suprema in Peano Arithmetic
    Paula Henk
    Albert Visser
    Archive for Mathematical Logic, 2017, 56 : 555 - 584
  • [9] MEANING AND TRUTH IN PEANO ARITHMETIC
    MAGARI, R
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (06): : 902 - 903
  • [10] EXTENDIBLE SETS IN PEANO ARITHMETIC
    SMITH, ST
    JOURNAL OF SYMBOLIC LOGIC, 1987, 52 (04) : 1084 - 1084